Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, nr 4(78) | 99--122
Tytuł artykułu

Leading-edge polymer/carbonaceous nano-reinforcement nanocomposites — opportunities for space sector

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbonaceous or nanocarbon nano-reinforcement nanocomposites have been found as emergent candidates for aerospace industry. Consequently, the multifunctional nanocomposites have been fabricated using marvelous nanocarbon nanostructures like graphene, carbon nanotube, fullerene, carbon black, etc. Manufacturing techniques have also been engrossed for the formation of high performance engineering nanocomposites having fine strength, heat stability, flame resistance, and other space desired features. These practices include solution, in situ, and melt procedures, on top of specific space structural design techniques, for the formation of aerospace structures. The aerospace related material property enhancements using various carbonaceous nano-reinforcements depends upon the type of nanocarbon, dimensionality, as well as inherent features of these nanostructures (in addition to the choice of manufacturing methods). Furthermore, carbon nano-reinforcements have been filled, besides carbon fibers, in the epoxy matrices. Nanocarbon coated carbon fibers have been filled in epoxy resins to form the high performance nanomaterials for space structures. The engineering features of these materials have been experiential appropriate for the aerospace structures. Further research on these nanomaterials may be a key towards future opportunities in the aero systems. Additionally, the explorations on structure-property relationships of the carbonaceous nanocomposites have been found indispensable for the development of advanced aerospace structures.
Wydawca

Rocznik
Strony
99--122
Opis fizyczny
Bibliogr. 160 poz., rys., tab., wykr.
Twórcy
  • NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects engineering, Northwestern Polytechnical University Xi'an, China, dr.ayeshakausar@yahoo.com
  • UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, South Africa
autor
  • NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects engineering, Northwestern Polytechnical University Xi'an, China
  • UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, South Africa
Bibliografia
  • 1. Kausar, A., Innovations in poly (vinyl alcohol) derived nanomaterials. Advances in Materials Science, 2020. 20(3): p. 5-22.
  • 2. Cuellar, C., K. Watson, and E. Smela, Fabrication, characterization, and repair of nanocarbon-loaded aircraft paint-based sensors for real-world SHM: studies at the laboratory scale. Structural Health Monitoring, 2023: p. 14759217231198015.
  • 3. Kausar, A., Advances in carbon fiber reinforced polyamide-based composite materials. Advances in Materials Science, 2019. 19(4): p. 67-82.
  • 4. Kausar, A., et al., Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. C, 2023. 9(1): p. 29.
  • 5. Esteves, R., et al. Investigation of Stress Corrosion Cracking via in-situ Measurements. in AIAA SCITECH 2023 Forum. 2023.
  • 6. El Khatiri, W., et al., Experimental study of component-based transfer path analysis hybrid methods applied to a helicopter. Applied Acoustics, 2023. 210: p. 109431.
  • 7. Kannan, S., et al., Nanotechnology: Nanocomposites Processing, in Innovative Development in Micromanufacturing Processes. CRC Press. p. 372-392.
  • 8. Weerasinghe, J., et al., Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites. Nanomaterials, 2023. 13(11): p. 1763.
  • 9. Almajid, A., et al., Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites. Plastics, Rubber and Composites, 2015. 44(2): p. 50-62.
  • 10. Li, M., I.H. Kim, and Y.G. Jeong, Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties. Journal of Applied Polymer Science, 2010. 118(4): p. 2475-2481.
  • 11. Thomas, S., S.C. George, and S. Thomas, Evaluation of mechanical, thermal, electrical, and transport properties of MWCNT‐filled NR/NBR blend composites. Polymer Engineering & Science, 2018. 58(6): p. 961-972.
  • 12. Park, S.M., M.H. Kim, and O.O. Park, Synergistic effect of carbon nanotubes on the flame retardancy of poly (methyl methacrylate)/zinc oxalate nanocomposites. Macromolecular Research, 2016. 24(9): p. 777-781.
  • 13. Kausar, A., Multifunctional polymer/carbonaceous nanocomposites for aerospace applications. Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications, 2022: p. 55.
  • 14. Quan, D., et al., On the application of strong thermoplastic–thermoset interactions for developing advanced aerospace-composite joints. Thin-Walled Structures, 2023. 186: p. 110671.
  • 15. Kausar, A., Future and challenging attributes of aeronautical nanocomposites. Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications, 2022: p. 317.
  • 16. Gaiotti, M. and C.M. Rizzo, Buckling behavior of FRP sandwich panels made by hand layup and vacuum bag infusion procedure. Rizzuto & Guedes Soares (eds), Sustainable Maritime Transportation and Exploitation of Sea Resources, 2011: p. 385-392.
  • 17. Atas, C., et al., An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes. Composite Structures, 2011. 93(3): p. 1178-1186.
  • 18. Firuz, Z., L.C. Shing, and S.A.S.N. Fadzli. Flexural Properties of Al/Floral Foam Sandwich Composite Prepared by Hand Lay Up Process. in IOP Conference Series: Materials Science and Engineering. 2019.
  • 19. Chen, C., et al., Prediction of the resin fillet size in honeycomb sandwich composites with self-adhesive prepreg skin. Journal of Reinforced Plastics and Composites, 2016. 35(21): p. 1566-1575.
  • 20. Chen, C., et al., Improvement in skin–core adhesion of multiwalled carbon nanotubes modified carbon fiber prepreg/Nomex honeycomb sandwich composites. Journal of Reinforced Plastics and Composites, 2017. 36(8): p. 608-618.
  • 21. Uddin, M., et al., Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications. Advanced Composites and Hybrid Materials, 2019. 2(2): p. 339-350.
  • 22. Valenza, A. and V. Fiore, Influence of resin viscosity and vacuum level on mechanical performance of sandwich structures manufactured by vacuum bagging. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 2010. 29(1): p. 20-30.
  • 23. Kratz, J. and P. Hubert, Vacuum bag only co-bonding prepreg skins to aramid honeycomb core. Part I. Model and material properties for core pressure during processing. Composites Part A: Applied Science and Manufacturing, 2015. 72: p. 228-238.
  • 24. Lavaggi, T., et al., Theory‐guided machine learning for optimal autoclave co‐curing of sandwich composite structures. Polymer Composites, 2022. 43(8): p. 5319-5331.
  • 25. Rudd, C., Resin transfer molding and structural reaction injection molding. ASM Handbook, 2001. 21: p. 492-500.
  • 26. Torres, J.P., et al., Manufacture of green-composite sandwich structures with basalt fiber and bioepoxy resin. Advances in Materials Science and Engineering, 2013. 2013.
  • 27. Gall, M., G. Steinbichler, and R.W. Lang, Learnings about design from recycling by using post-consumer polypropylene as a core layer in a co-injection molded sandwich structure product. Materials & Design, 2021. 202: p. 109576.
  • 28. Wakeman, M., et al., Compression moulding of glass and polypropylene composites for optimised macro-and micro-mechanical properties. 4: Technology demonstrator—a door cassette structure. Composites Science and Technology, 2000. 60(10): p. 1901-1918.
  • 29. Åkermo, M. and B.T. Åström, Modelling component cost in compression moulding of thermoplastic composite and sandwich components. Composites Part A: Applied Science and Manufacturing, 2000. 31(4): p. 319-333.
  • 30. Fette, M., et al. New approach for the efficient manufacturing of sandwich structures based on sheet moulding compounds. Advanced Materials Research, 2016. 1140: p. 264-271.
  • 31. Zhang, J., et al., Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Composites Communications, 2019. 13: p. 12-17.
  • 32. Bonthu, D., et al., 3D printing of syntactic foam cored sandwich composite. Composites Part C: Open Access, 2020. 3: p. 100068.
  • 33. Bharath, H., et al., Flexural response of 3D printed sandwich composite. Composite Structures, 2021. 263: p. 113732.
  • 34. Essassi, K., et al., Experimental and analytical investigation of the bending behaviour of 3D-printed bio-based sandwich structures composites with auxetic core under cyclic fatigue tests. Composites Part A: Applied Science and Manufacturing, 2020. 131: p. 105775.
  • 35. Kumar, S.K., et al., 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules, 2017. 50(3): p. 714-731.
  • 36. Zaghloul, M.M.Y., M.M.Y. Zaghloul, and M. Fuseini, Recent progress in Epoxy Nanocomposites: Corrosion, structural, flame retardancy and applications—A comprehensive review. Polymers for Advanced Technologies, 2023.
  • 37. Xie, X.-L., Y.-W. Mai, and X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports, 2005. 49(4): p. 89-112.
  • 38. Ma, P.-C., et al., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 2010. 41(10): p. 1345-1367.
  • 39. Roy, S., et al., Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites. Journal of Membrane Science, 2011. 375(1-2): p. 81-87.
  • 40. Punetha, V.D., et al., Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017. 67: p. 1-47.
  • 41. Kumari, S., et al. Advanced Welding of Dissimilar Materials for Aerospace and Automotive Applications. in E3S Web of Conferences. 2023.
  • 42. Bharatiya, D., et al., A materials science approach towards bioinspired polymeric nanocomposites: a comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023. 72(2): p. 119-134.
  • 43. Yang, H., et al., Effect of nanofiller shape on viscoelasticity of rubber nanocomposite investigated by FEA. Composites Part B: Engineering, 2016. 92: p. 160-166.
  • 44. Saxena, A., et al., A short review on machine learning for the purpose of optimizing and predicting the properties of polymeric nanocomposites. Materials Today: Proceedings, 2023.
  • 45. Netravali, A.N. and K. Mittal, Interface/interphase in polymer nanocomposites. 2016: John Wiley & Sons.
  • 46. Barik, S.B., et al., Recent progress in reinforcement of nanofillers in epoxy-based nanocomposites. Materials Today: Proceedings, 2023.
  • 47. Ranjan, P., et al., Theoretical analysis: electronic and optical properties of small Cu-Ag nano alloy clusters. Computational Chemistry Methodology in Structural Biology and Materials Sciences, 2017.
  • 48. Kim, K., et al., Polyphenylene sulfide/liquid crystal polymer blend system for laser direct structuring and electroless plating applications. Composites Part B: Engineering, 2019. 166: p. 742-748.
  • 49. Belkheir, M., et al., Effect of carbon nanotube (CNT)-reinforced polymers and biopolymer matrix on interface damage of nanocomposite materials. Emergent Materials, 2023: p. 1-14.
  • 50. Rudyak, V.Y., et al., Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single-walled carbon nanotubes. Diamond and Related Materials, 2023. 132: p. 109616.
  • 51. Ou, Y., L. Wu, and D. Mao, Hierarchical mode I interlaminar toughening of unidirectional CFRP laminates by the synergistic effects of CNT powders and veils. Composites Part A: Applied Science and Manufacturing, 2023. 168: p. 107464.
  • 52. Sui, G., et al., The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing. Polymer, 2019. 182: p. 121838.
  • 53. Gu, X., et al., The meniscus-guided deposition of semiconducting polymers. Nature Communications, 2018. 9(1): p. 1-16.
  • 54. Vorobei, A.M., et al., Preparation of polymer–multi-walled carbon nanotube composites with enhanced mechanical properties using supercritical antisolvent precipitation. Polymer, 2016. 95: p. 77-81.
  • 55. Saeed, K., et al., Graphene and carbon nanotubes-based polymer nanocomposites. Smart Polymer Nanocomposites. 2023, Elsevier. p. 205-218.
  • 56. Fawaz, J. and V. Mittal, Synthesis of polymer nanocomposites: review of various techniques. 2015, Wiley Online Library. p. 992-1057.
  • 57. Gong, H., et al., Precise Synthesis of Ultra‐High‐Molecular‐Weight Fluoropolymers Enabled by Chain‐Transfer‐Agent Differentiation under Visible‐Light Irradiation. Angewandte Chemie International Edition, 2020. 59(2): p. 919-927.
  • 58. Kausar, A., Self-healing polymer/carbon nanotube nanocomposite: A review. Journal of Plastic Film & Sheeting, 2021. 37(2): p. 160-181.
  • 59. Chen, X., et al., Improving the flame retardancy and mechanical properties of epoxy composites significantly with a low-loading CNT-based hierarchical hybrid decorated with reactive hyperbranched polyphosphoramide. Applied Surface Science, 2022. 576: p. 151765.
  • 60. Chazot, C.A., et al., Molecular alignment of a meta-aramid on carbon nanotubes by in situ interfacial polymerization. Nano Letters, 2022. 22(3): p. 998-1006.
  • 61. Lopes Pereira, E.C. and B.G. Soares, Conducting epoxy networks modified with non‐covalently functionalized multi‐walled carbon nanotube with imidazolium‐based ionic liquid. Journal of Applied Polymer Science, 2016. 133(38).
  • 62. Soman, V., K. Vishwakarma, and M.K. Poddar, Ultrasound assisted synthesis of polymer nanocomposites: a review. Journal of Polymer Research, 2023. 30(11): p. 406.
  • 63. Sharma, D., et al., Bio-based polyamide nanocomposites of nanoclay, carbon nanotubes and graphene: a review. Iranian Polymer Journal, 2023. 32(6): p. 773-790.
  • 64. Abral, H., et al., A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 2019. 93: p. 276-283.
  • 65. Fu, X., et al., Molecular modeling investigation on mechanism of diazinon pesticide removal from water by single-and multi-walled carbon nanotubes. Ecotoxicology and Environmental Safety, 2023. 256: p. 114857.
  • 66. Uyor, U.O., et al., A review of recent advances on the properties of polypropylene-carbon nanotubes composites. Journal of Thermoplastic Composite Materials, 2023. 36(9): p. 3737-3770.
  • 67. Dolbin, I., G.M. Magomedov, and G. Kozlov, Effect of Polymer Matrix Stiffness on Carbon Nanotube-Reinforced Polymer Composites. Russian Physics Journal, 2023. 65(12): p. 2182-2185.
  • 68. Krause, B., et al., Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites. Micromachines, 2023. 14(1): p. 181.
  • 69. Soni, S.K., et al., Carbon nanotubes as exceptional nanofillers in polymer and polymer/fiber nanocomposites: An extensive review. Materials Today Communications, 2023: p. 107358.
  • 70. Kaplan, M., et al., Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity. Journal of Industrial Textiles, 2023. 53: p. 15280837231186174.
  • 71. Alshahrani, H., et al., Mechanical properties study on sandwich composites of glass fiber reinforced plastics (GFRP) using liquid thermoplastic resin, Elium®: preliminary experiments. Coatings, 2022. 12(10): p. 1423.
  • 72. Chen, Q., et al., Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology, 2017. 144: p. 202-207.
  • 73. Li, Z., et al., Manufacturing and mechanical characterisation of polyurethane resin based sandwich composites for three-dimensional fabric reinforcement. Materials Today Communications, 2020. 24: p. 101046.
  • 74. Garrido, M., et al., Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation. Construction and Building Materials, 2019. 198: p. 465-478.
  • 75. Dikshit, V., et al. Investigation of out of plane compressive strength of 3D printed sandwich composites. IOP Conference Series: Materials Science and Engineering. 2016.
  • 76. Li, T. and L. Wang, Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 2017. 175: p. 46-57.
  • 77. Jakubinek, M.B., et al., Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Composites Part B: Engineering, 2015. 69: p. 87-93.
  • 78. Wang, Y., et al., Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. Royal Society Open Science, 2016. 3(9): p. 160488.
  • 79. Wang, D. and S. Li, Collaborative optimization design of lightweight and crashworthiness of the front-end structures of automobile body using HW–GRA for Pareto mining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021: p. 0954406221992802.
  • 80. Ikumapayi, O.M. and E.T. Akinlabi, Efficacy of α-β grade titanium alloy powder (Ti–6Al–2Sn–2Zr–2Mo–2Cr–0.25 Si) in surface modification and corrosion mitigation in 3.5% NaCl on friction stir processed armour grade 7075-T651 aluminum alloys—insight in defence applications. Materials Research Express, 2019. 6(7): p. 076546.
  • 81. Guadagno, L., et al., Functional structural nanocomposites with integrated self-healing ability. Materials Today: Proceedings, 2021. 34: p. 243-249.
  • 82. Chowdhury, N.M., et al., Static and fatigue testing bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy laminates used on aircraft structures. Composite Structures, 2016. 142: p. 96-106.
  • 83. Nayak, S.Y., et al., Mechanical properties of multi layer plain weave and 3-D glass fabric epoxy composites. International Journal of Composite Materials, 2015. 5(2): p. 30-36.
  • 84. Vieira, D.R., R.K. Vieira, and M. Chang Chain, Strategy and management for the recycling of carbon fiber-reinforced polymers (CFRPs) in the aircraft industry: a critical review. International Journal of Sustainable Development & World Ecology, 2017. 24(3): p. 214-223.
  • 85. Mrazova, M., Advanced composite materials of the future in aerospace industry. Incas Bulletin, 2013. 5(3): p. 139.
  • 86. Abliz, D., et al., Curing methods for advanced polymer composites-a review. Polymers and Polymer Composites, 2013. 21(6): p. 341-348.
  • 87. Li, C. and A. Strachan, Evolution of network topology of bifunctional epoxy thermosets during cure and its relationship to thermo-mechanical properties: A molecular dynamics study. Polymer, 2015. 75: p. 151-160.
  • 88. Öztürkmen, M.B., Y. Öz, and N. Dilsiz, Physical and mechanical properties of graphene and h‐Boron nitride reinforced hybrid aerospace grade epoxy nanocomposites. Journal of Applied Polymer Science, 2023: p. e54639.
  • 89. Chen, H., et al., Mechanical properties of reactive polyetherimide-modified tetrafunctional epoxy systems. Polymer, 2023. 270: p. 125763.
  • 90. Tambe, P., M. Tanniru, and B.K. Sai, Structural/load bearing characteristics of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene. 2022. p. 379-400.
  • 91. Torrisi, L., et al., Graphene oxide modifications by X-rays irradiations in air and vacuum. Vacuum, 2023: p. 112283.
  • 92. Ferreira, F., et al., Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surfaces and Interfaces, 2018. 10: p. 100-109.
  • 93. Bortz, D.R., E.G. Heras, and I. Martin-Gullon, Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules, 2012. 45(1): p. 238-245.
  • 94. Cao, G., et al., Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Applied Materials & Interfaces, 2019. 11(22): p. 20298-20303.
  • 95. Naseer, Z. and Z. Khan. Graphene Effect on Mechanical Properties of Sandwich Panel for Aerospace Structures. Key Engineering Materials. 2021.
  • 96. Sahu, M. and A.M. Raichur, Toughening of high performance tetrafunctional epoxy with poly (allyl amine) grafted graphene oxide. Composites Part B: Engineering, 2019. 168: p. 15-24.
  • 97. Kausar, A., Review on conducting polymer/nanodiamond nanocomposites: Essences and functional performance. Journal of Plastic Film & Sheeting, 2019. 35(4): p. 331-353.
  • 98. Krueger, A. and D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Advanced Functional Materials, 2012. 22(5): p. 890-906.
  • 99. Zulkefli, N.A., et al., Hybrid nanofiller reinforcement in thermoset and biothermoset applications: A review. Nanotechnology Reviews, 2023. 12(1): p. 20220499.
  • 100. Wirth, D.M. and J.K. Pokorski, Design and fabrication of a low-cost pilot-scale melt-processing system. Polymer, 2019. 181: p. 121802.
  • 101. Singh, B. and A. Mohanty, Nano‐mechanical approach to study the behavior of annealed nanodiamond reinforced epoxy nanocomposites. Polymer Composites, 2023. 44(5): p. 2997-3006.
  • 102. Shuai, C., et al., Surface modification of nanodiamond: toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 2019. 126: p. 1116-1124.
  • 103. Zhang, Y., J.R. Choi, and S.-J. Park, Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Composites Part A: Applied Science and Manufacturing, 2017. 101: p. 227-236.
  • 104. Xie, K., et al., High-strength Al Matrix Composites Reinforced With Uniformly Dispersed Nanodiamonds. Journal of Alloys and Compounds, 2021: p. 162917.
  • 105. Zhao, J., et al., Electrospinning Technique Meets Solar Energy: Electrospun Nanofiber-Based Evaporation Systems for Solar Steam Generation. Advanced Fiber Materials, 2023: p. 1-31.
  • 106. Arora, M., et al., Dielectric and Magneto-dielectric properties of GdFeO3 modified PbTiO3 nanofibrous mats obtained through electrospinning technique. Materials Science and Engineering: B, 2023. 296: p. 116702.
  • 107. Liu, L., et al., Preparation of high-performance graphene materials by adjusting internal micro-channels using a combined electrospray/electrospinning technique. Journal of Alloys and Compounds, 2023. 940: p. 168882.
  • 108. Kausar, A., Nanodiamond/mwcnt-based polymeric nanofiber reinforced poly (bisphenol a-co-epichlorohydrin). Malays Polymer Journal, 2015. 10: p. 23-32.
  • 109. Wang, H., et al., The influence of the ultrasonic treatment of working fluids on electrospun amorphous solid dispersions. Frontiers in Molecular Biosciences, 2023. 10: p. 1184767.
  • 110. Yoshitomi, T., T. Matsumoto, and T. Nishino, Highly Thermally Conductive Nanocomposites Prepared by the Ice-Templating Alignment of Nanodiamonds in the Thickness Direction. ACS Applied Polymer Materials, 2023.
  • 111. Behler, K.D., et al., Nanodiamond-polymer composite fibers and coatings. ACS Nano, 2009. 3(2): p. 363-369.
  • 112. Sun, C., et al., Preparation and their thermal properties of the nanodiamond/polyacrylonitrile composite nanofibers generated from electrospinning. Journal of Polymer Research, 2019. 26(6): p. 1-7.
  • 113. Rianjanu, A., et al., Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers. Sensors and Actuators B: Chemical, 2020. 319: p. 128286.
  • 114. Adegbola, T., O. Agboola, and O. Fayomi, Review of polyacrylonitrile blends and application in manufacturing technology: recycling and environmental impact. Results in Engineering, 2020. 7: p. 100144.
  • 115. Alishiri, M. and A. Shojaei, In situ preparation and characterization of biocompatible acrylate‐terminated polyurethane containing chemically modified multiwalled carbon nanotube. Polymer Composites, 2018. 39: p. E297-E307.
  • 116. Alishahi, E., et al., Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy‐based nanocomposites. Macromolecular Materials and Engineering, 2013. 298(6): p. 670-678.
  • 117. Latif, Z., et al., Thermal and Mechanical Properties of Nano-Carbon-Reinforced Polymeric Nanocomposites: A Review. Journal of Composites Science, 2023. 7(10): p. 441.
  • 118. Morimune, S., et al., Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules, 2011. 44(11): p. 4415-4421.
  • 119. Kausar, A., Advances in condensation polymer containing zero-dimensional nanocarbon reinforcement—fullerene, carbon nano-onion, and nanodiamond. Polymer-Plastics Technology and Materials, 2021. 60(7): p. 695-713.
  • 120. Kausar, A., Conducting Polymer-Based Nanocomposites: Fundamentals and Applications. 2021: Elsevier.
  • 121. Singh, P.P., Advances in Carbon Nanomaterial‐Based Green Nanocomposites. Emerging Carbon‐Based Nanocomposites for Environmental Applications, 2020: p. 175-201.
  • 122. Li, Y., et al., A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science, 2019. 54(2): p. 1036-1076.
  • 123. Kim, J.B., T.W. Kim, and C.G. Kim, Simulation method for complex permittivities of carbon black/epoxy composites at microwave frequency band. Journal of Applied Polymer Science, 2006. 100(3): p. 2189-2195.
  • 124. Verma, A., et al., Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polymer Composites, 2020. 41(1): p. 338-349.
  • 125. Roopa, T., et al., Mechanical properties of vinylester/glass and polyester/glass composites fabricated by resin transfer molding and hand lay‐up. Journal of Vinyl and Additive Technology, 2015. 21(3): p. 166-173.
  • 126. Beyerlein, I.J. and S.L. Phoenix, Statistics for the strength and size effects of microcomposites with four carbon fibers in epoxy resin. Composites Science and Technology, 1996. 56(1): p. 75-92.
  • 127. Li, S., et al., Advances in hybrid fibers reinforced polymer-based composites prepared by FDM: A review on mechanical properties and prospects. Composites Communications, 2023: p. 101592.
  • 128. Balaji, K., K. Shirvanimoghaddam, and M. Naebe, Multifunctional basalt fiber polymer composites enabled by carbon nanotubes and graphene. Composites Part B: Engineering, 2023: p. 111070.
  • 129. Dong, J., et al., Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Composites Science and Technology, 2017. 149: p. 75-80.
  • 130. Kausar, A., Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges. Materials Research Innovations, 2021. 25(3): p. 175-185.
  • 131. Kausar, A. and R. Taherian, 3-Electrical Conductivity Behavior of Polymer Nanocomposite with Carbon Nanofillers. Electrical Conductivity in Polymer-Based Composites Experiments, Modelling, and Applications; Plastics Design Library, 2018: p. 41-72.
  • 132. Kong, X., et al. Dielectric properties of epoxy-based nanocomposite filled with fullerene C60. in 2020 IEEE 3rd International Conference on Dielectrics (ICD). 2020. IEEE.
  • 133. Kausar, A., Advances in Polymeric Nanocomposites Incorporating Graphene–Fullerene and Graphene Oxide–Fullerene Hybrids, in All-carbon Composites and Hybrids. 2021, Royal Society of Chemistry. p. 255-277.
  • 134. Kausar, A., Poly (methyl methacrylate)/Fullerene nanocomposite—Factors and applications. Polymer-Plastics Technology and Materials, 2021: p. 1-16.
  • 135. Kausar, A., Potential of polymer/fullerene nanocomposites for anticorrosion applications in the biomedical field. Journal of Composites Science, 2022. 6(12): p. 394.
  • 136. Kausar, A., Cutting-edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. Polymer-Plastics Technology and Materials, 2023. 62(5): p. 604-617.
  • 137. Rafiee, M.A., et al., Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 2011. 13(2): p. 733-737.
  • 138. Dai, Y., et al., Characterization of tensile failure behaviour of magnesia refractory materials by a modified dog-bone shape direct tensile method and splitting tests. Ceramics International, 2020. 46(5): p. 6517-6525.
  • 139. Zhang, Y.-F., et al., A novel approach for the edge rolling force and dog-bone shape by combination of slip-line and exponent velocity field. SN Applied Sciences, 2020. 2(12): p. 1-11.
  • 140. Kim, J.-H., et al., Mechanical properties of polymer–fullerene bulk heterojunction films: Role of nanomorphology of composite films. Chemistry of Materials, 2017. 29(9): p. 3954-3961.
  • 141. Giannopoulos, G.I., Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-12. Composites Part B: Engineering, 2019. 161: p. 455-463.
  • 142. Zuev, V. Polymer nanocomposites containing fullerene C60 nanofillers. in Macromolecular Symposia. 2011. Wiley Online Library.
  • 143. Khan, W., R. Sharma, and P. Saini, Carbon nanotube-based polymer composites: synthesis, properties and applications. Carbon Nanotubes-Current Progress of their Polymer Composites, 2016.
  • 144. Mamidi, N., et al., Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. Composites Part B: Engineering, 2022: p. 110150.
  • 145. Anwer, A.H., et al., State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Advances in Colloid and Interface Science, 2023: p. 102955.
  • 146. Mousavi, S.R., et al., A review of recent progress in improving the fracture toughness of epoxy‐based composites using carbonaceous nanofillers. Polymer Composites, 2022. 43(4): p. 1871-1886.
  • 147. Kausar, A., Corrosion prevention prospects of polymeric nanocomposites: A review. Journal of Plastic Film & Sheeting, 2019. 35(2): p. 181-202.
  • 148. D'Antino, T., et al., Tensile and interlaminar shear behavior of thermoset and thermoplastic GFRP bars exposed to alkaline environment. Journal of Building Engineering, 2023. 72: p. 106581.
  • 149. Khanjar, S., et al., Mixed Matrix Thermoset Casting with Thermoplastic Fused Filament Fabrication 3D Printing. Physiology, 2023. 38(S1): p. 5733152.
  • 150. Ding, C., et al., A review of 1D carbon-based materials assembly design for lightweight microwave absorption. Carbon, 2023: p. 118279.
  • 151. Liu, H., et al., Modification of MWNTs by the combination of Li-TFSI and MAPP: Novel strategy to high performance PP/MWNTs nanocomposites. Composites Part B: Engineering, 2019. 176: p. 107268.
  • 152. Mondal, S., et al., Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018. 107: p. 447-460.
  • 153. Jayalakshmy, M. and R.K. Mishra, Applications of Carbon-Based Nanofiller-Incorporated Rubber Composites in the Fields of Tire Engineering, Flexible Electronics and EMI Shielding, in Carbon-Based Nanofiller and Their Rubber Nanocomposites. 2019, Elsevier. p. 441-472.
  • 154. Zhang, X., et al., Design of glass fiber reinforced plastics modified with CNT and pre-stretching fabric for potential sports instruments. Materials & Design, 2016. 92: p. 621-631.
  • 155. Miao, T., Y. Ding, and Z. Zhai, Overmolded hybrid thermoset‐thermoplastic structures: Experimental study on the bonding strength of co‐curing thermoplastic film onto thermoset composite. Journal of Applied Polymer Science, 2023. 140(7): p. e53488.
  • 156. Cao, X., et al., Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano, 2014. 8(12): p. 12769-12776.
  • 157. Li, Y., et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016. 7(1): p. 1-10.
  • 158. Rathore, D. and U.K. Dwivedi, 2 Advanced Nanocarbon Materials. Advanced Nanocarbon Materials: Applications for Health Care, 2022: p. 11.
  • 159. Toozandehjani, M., et al., Conventional and advanced composites in aerospace industry: technologies revisited. American Journal of Aerospace Engineering 2018. 5: p. 9-15.
  • 160. Li, C., et al., Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Materials Science and Engineering: A, 2014. 597: p. 264-269.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ad58d834-fe7d-443a-bcef-8a5a9e137abb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.