Warianty tytułu
Języki publikacji
Abstrakty
Gravitational search algorithm(GSA) is a recent createdmetaheuristic optimization algorithm with good results in function optimization as well as real world optimization problems. Many real world problems involve multiple (often conflicting) objectives, which should be optimized simultaneously. Therefore, the aim of this paper is to propose a multi-objective version of GSA, namely clustering based archive multi-objective GSA (CA-MOGSA). Proposed method is created based on the Pareto principles. Selected non-dominated solutions are stored in an external archive. To control the size of archive, the solutions with less crowding distance are removed. These strategies guarantee the elitism and diversity as two important features of multi-objective algorithms. The archive is clustered and a cluster is randomly selected for each agent to apply the gravitational force to attract it. The selection of the proper cluster is based on the distance between clusters representatives and population member (the agent). Therefore, suitable trade-off between exploration and exploitation is provided. The experimental results on eight standard benchmark functions reveal that CA-MOGSA is a well-organized multi-objective version of GSA. It is comparable with the state-ofthe- art algorithms including non-dominated sorting genetic algorithm-II (NSGA-II), strength Pareto evolutionary algorithm (SPEA2) and better than multi-objective GSA (MOGSA), time-variant particle swarm optimization (TV-PSO), and non-dominated sorting GSA (NSGSA).
Czasopismo
Rocznik
Tom
Strony
387--409
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering Shahid Bahonar University of Kerman, Kerman, Iran
autor
- Department of Electrical Engineering Shahid Bahonar University of Kerman, Kerman, Iran, nezam@uk.ac.ir
autor
- Department of Information Technology Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology, Kerman, Iran Abstract.
Bibliografia
- [1] Abraham, A., Jain, L.: Evolutionary multiobjective optimization, Springer, 2005, ISBN 1852337877.
- [2] Baniasadi, Z.: Multi-objective Optimization by Gravitational Search Algorithm, M.Sc. Thesis, Azad University of Najafabad, Iran, 2009.
- [3] Chatterjee, A., Mahanti, G. K., Pathak, N. N.: Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna, Progress In Electromagnetics Research B, 25, 2010, 331–348, ISSN 1937-6472.
- [4] Coello, C.: C. An Updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends, Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC.
- [5] Coello, C. A. C.: A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowledge and Information systems, 1(3), 1999, 269–308, ISSN 0219-1377.
- [6] Coello, C. A. C., Pulido, G. T., Lechuga, M. S.: Handling multiple objectives with particle swarm optimization, Evolutionary Computation, IEEE Transactions on, 8(3), 2004, 256–279, ISSN 1089-778X.
- [7] Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimizations, Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02),(Singapore),Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02),(Singapore).
- [8] Deb, K., Pratap, A., Agarwal, S.,Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions on, 6(2), 2002, 182–197, ISSN 1089-778X.
- [9] Fonseca, C. M., Fleming, P. J.: Multiobjective genetic algorithms, Genetic Algorithms for Control Systems Engineering, IEE Colloquium on, IET.
- [10] Fonseca, C. M., Fleming, P. J.: An overview of evolutionary algorithms in multiobjective optimization, Evolutionary computation, 3(1), 1995, 1–16.
- [11] Ghosh, A., Dehuri, S.: Evolutionary algorithms for multi-criterion optimization: A survey, International Journal of Computing and Information Sciences, 2(1), 2004, 38–57.
- [12] Horn, J., Nafpliotis, N., Goldberg, D. E.: A niched Pareto genetic algorithm for multiobjective optimization, Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, Ieee, ISBN 0780318994.
- [13] Janetzko, H., Stoffel, F., Mittelstdt, S., Keim, D. A.: Anomaly detection for visual analytics of power consumption data, Computers and Graphics, 38, 2014, 27–37, ISSN 0097-8493.
- [14] Konak, A., Coit, D. W., Smith, A. E.: Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering and System Safety, 91(9), 2006, 992–1007, ISSN 0951-8320.
- [15] Lei, D.: A Pareto archive particle swarm optimization for multi-objective job shop scheduling, Computers and Industrial Engineering, 54(4), 2008, 960–971, ISSN 0360-8352.
- [16] Li, C., Zhou, J.: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm, Energy Conversion and Management, 52(1), 2011, 374–381, ISSN 0196-8904.
- [17] Nobahari, H., Nikusokhan,M., Siarry, P.: Non-dominated sorting gravitational search algorithm, Proc. of the 2011 International Conference on Swarm Intelligence, ICSI.
- [18] Purshouse, R. C., Fleming, P. J.: On the evolutionary optimization of many conflicting objectives, Evolutionary Computation, IEEE Transactions on, 11(6), 2007, 770–784, ISSN 1089-778X.
- [19] Raghuwanshi, M., Kakde, O.: Survey on multiobjective evolutionary and real coded genetic algorithms, Proceedings of the 8th Asia Pacific symposium on intelligent and evolutionary systems.
- [20] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm, Information Sciences, 179(13), 2009, 2232–2248, ISSN 0020-0255.
- [21] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm, Natural Computing, 9(3), 2010, 727–745, ISSN 1567-7818.
- [22] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm, Engineering Applications of Artificial Intelligence, 24(1), 2011, 117–122, ISSN 0952-1976.
- [23] Rhler, A. B., Chen, S.: An analysis of sub-swarms in multi-swarm systems, Springer, 2011, ISBN 364225831X, 271–280.
- [24] Sabri, N. M., Puteh, M., Mahmood, M. R.: A Review of Gravitational Search Algorithm, Int. J. Advance. Soft Comput. Appl, 5(3), 2013.
- [25] Schott, J.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, Report, DTIC Document, 1995.
- [26] Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary computation, 2(3), 1994, 221–248.
- [27] Sun, T.-Y., Wu, W.-C., Tsai, S.-J., Liu, C.-C., Chiu, S.-Y., Hsieh, S.-T.: Particle swarm optimizer for multiobjective problems based on proportional distribution and cross-over operation, Systems, Man and Cybernetics,
- [28] Tripathi, P. K., Bandyopadhyay, S., Pal, S. K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Information Sciences, 177(22), 2007, 5033–5049, ISSN 0020-0255.
- [29] Van Veldhuizen, D. A., Lamont, G. B.: Multiobjective evolutionary algorithm research: A history and analysis, Report, Citeseer, 1998.
- [30] Yin, M., Hu, Y., Yang, F., Li, X., Gu, W.: A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering, Expert Systems with Applications, 38(8), 2011, 9319–9324, ISSN 0957-4174.
- [31] Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithmbased on decomposition, Evolutionary Computation, IEEE Transactions on, 11(6), 2007, 712–731, ISSN 1089-778X.
- [32] Zhang, Y., Jun, Y., Wei, G., Wu, L.: Find multi-objective paths in stochastic networks via chaotic immune PSO, Expert Systems with Applications, 37(3), 2010, 1911–1919, ISSN 0957-4174.
- [33] Zhang, Y., Wang, S., Phillips, P., Ji, G.: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection, Knowledge-Based Systems, 64, 2014, 22–31, ISSN 0950-7051.
- [34] Zhang, Y., Wang, S., Sun, Y., Ji, G., Phillips, P., Dong, Z.: Binary Structuring Elements Decomposition Based on an Improved Recursive Dilation-Union Model and RSAPSO Method, Mathematical Problems in Engineering, 2014, 2014, ISSN 1024-123X.
- [35] Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63, Shaker Ithaca, 1999.
- [36] Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results, Evolutionary computation, 8(2), 2000, 173–195.
- [37] Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimization, Springer, 2004, ISBN 354020637X, 3–37.
- [38] Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm, 2001.
- [39] Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, Evolutionary Computation, IEEE Transactions on, 3(4), 1999, 257–271, ISSN 1089-778X
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ad110e8c-9d18-4c37-ab69-d2e8b77073e7