Warianty tytułu
Języki publikacji
Abstrakty
Detecting spatial tortuosity and atherosclerotic changes of the ilio-femoral arteries are crucial for planning endovascular access. The aim of this study was to find a reliable quantification procedure of arterial lumen and tortuosity to qualify patients for a suitable endovascular procedure. We conducted computed tomographic angiography in 76 patients. All ilio-femoral segments of the arterial tree were visualized using Osirix Dicom Viewer software to help qualify the patients to one of two groups: with possible or non-recommended vascular access. The same tomograms were then analyzed with image processing algorithms to perform ilio-femoral artery segmentation and quantification. We chose a set of arterial tortuosity and lumen measuring methods, such as the modified Gustafson-Kessel clustering algorithm and Support Vector Machine classifier, to automatically classify arterial-tree regions. The two 2D feature spaces were selected with the modified Gustafson-Kessel clusterization to create a combined model to assign around 2/3 cases to the access groups with high specificity (more than 88%) whereas the remaining patients were selected for re-evaluation. We concluded that the novel modification of the Gustafson-Kessel clustering algorithm is more suitable to the highly inseparable data than commonly used approaches. To identify ilio-femoral access limitations, we recommend more complex decision model. This study confirmed high usability of our chosen methodology in the quantitative examination of arteries for endovascular access planning.
Czasopismo
Rocznik
Tom
Strony
1123--1136
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Department of the Electrical Engineering Theory, Information and Measurement Systems, Warsaw University of Technology, Warsaw, Poland, tomasz.markiewicz@pw.edu.pl
- Department of Pathology, Military Institute of Medicine, Warsaw, Poland
autor
- Department of Vascular and Endovascular Surgery, Military Institute of Medicine, Warsaw, Poland, dziekiewicz@wim.mil.pl
Bibliografia
- [1] Colombo E, Rinaldo L, Lanzino G. Direct carotid puncture in acute ischaemic stroke intervention. Stroke Vasc Neurol 2020;5(1):71–9.
- [2] Sun Z, Jiang D, Liu P, Muccio M, Li C, Cao Y, et al. Age-related tortuosity of carotid and vertebral arteries: quantitative evaluation with MR angiography. Front Neurol 2022;13858805.
- [3] Li M, Wang Z, Fang L, Cheng S, Wang X, Liu N. Correlation analysis of coronary artery tortuosity and calcification score. BMC Surgery 2022;22:66.
- [4] Han H. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res 2012;49(3):185–97.
- [5] Konigstein M, Ben-Yehuda O, Redfors B, Mintz GS, Madhavan MV, Golomb M, et al. Impact of coronary artery tortuosity on outcomes following stenting: a pooled analysis from 6 trials. JACC Cardiovasc Interv 2021;14(9):1009–18.
- [6] Gupta A, Panda P, Sharma Y, Mahesh A, Sharma P, Mahesh N. Clinical profile of patients with coronary tortuosity and its relation with coronary artery disease. Preprints 2018. https://doi.org/10.20944/preprints201806.0381.v1.
- [7] Li Y, Feng Y, Ma G, Shen C, Liu N. Coronary tortuosity is negatively correlated with coronary atherosclerosis. J Int Med Res 2018;46(12):5205–9.
- [8] Welby J, Kim S, Carr C, Lehman V, Rydberg C, Wald J. Carotid artery tortuosity is associated with connective tissue diseases. AJNR Am J Neuroradiol 2019;40(10):1738–43.
- [9] Koge J, Tanaka K, Yoshimoto T, Shiozawa M, Kushi Y, Ohta T, et al. Internal carotid artery tortuosity: impact on mechanical thrombectomy. Stroke 2022;53(8):2458–67.
- [10] Zhang L, Liu X, Gong B, Li Q, Luo T, Lv F, et al. Increased internal carotid artery tortuosity is a risk factor for spontaneous cervicocerebral artery dissection. Eur J Vasc Endovasc Surg 2021;61(4):542–9.
- [11] Shang Ke, Chen X, Cheng C, Luo X, Xu S, Wang W, et al. Arterial tortuosity and its correlation with white matter hyperintensities in acute ischemic stroke. Neural Plast 2022;2022:1–10.
- [12] Klis K, Krzyzewski R, Kwinta B, Stachura K, Gasowski J. Tortuosity of the internal carotid artery and its clinical significance in the development of aneurysms. J Clin Med 2019;8(2):237.
- [13] Kim BJ, Kim SM, Kang DW, Kwon SU, Suh DC, Kim JS. Vascular tortuosity may be related to intracranial artery atherosclerosis. Int J Stroke 2015;10(7):1081–6.
- [14] Buradi A, Mahalingam A. Impact of coronary tortuosity on the artery hemodynamics. Biocybern Biomed Eng 2020;40(1):126–47.
- [15] Mach M, Okutucu S, Kerbel T, Arjomand A, Fatihoglu SG, Werner P, et al. Vascular Complications in TAVR: incidence, clinical impact, and management. J Clin Med 2021;10(21):5046. https://doi.org/10.3390/jcm10215046.
- [16] Kashyap V, Gharleghi R, Li DD, McGrath-Cadell L, Graham RM, Ellis C, et al. Accuracy of vascular tortuosity measures using computational modelling. Sci Rep 2022;12(1). https://doi.org/10.1038/s41598-022-04796-w.
- [17] Kamenskiy AV, MacTaggart JN, Pipinos II, Bikhchandani J, Dzenis YA. Three-Dimensional Geometry of the Human Carotid Artery. J Biomech Eng 2012;134(6). 0645021–0645027.
- [18] Ciurică S, Lopez-Sublet M, Loeys BL, Radhouani I, Natarajan N, Vikkula M, et al. Arterial Tortuosity Novel Implications for an Old Phenotype. Hypertension 2019;73(5):951–60.
- [19] Kinnel M, Faroux L, Villecourt A, Tassan-Mangina S, Heroguelle V, Nazeyrollas P, et al. Abdominal aorta tortuosity on computed tomography identifies patients at risk of complications during transfemoral transcatheter aortic valve replacement. Arch Cardiovasc Dis 2020;113(3):159–67.
- [20] Langouet Q, Martinez R, Saint-Etienne C, Behlaj Soulami R, Harmouche M, Aupart M, et al. Incidence, predictors, impact, and treatment of vascular complications after transcatheter aortic valve implantation in a modern prospective cohort under real conditions. J Vasc Surg 2020;72(6):2120–2129.e2.
- [21] Hammer Y, Landes U, Zusman O, Kornowski R, Witberg G, Orvin K, et al. Iliofemoral artery lumen volume assessment with three dimensional multi-detector computed tomography and vascular complication risk in transfemoral transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 2019;13(1):68–74.
- [22] Markiewicz T, Dziekiewicz M, Maruszynski M, Boguslawska-Walecka R, Kozlowski W. Recognition of atherosclerotic plaques and their extended dimensioning with computerized tomography angiography imaging. Int J Appl Math Comput Sci 2014;24:33–47.
- [23] Markiewicz T, Dziekiewicz M, Osowski S, Boguslawska-Walecka R, Kozlowski W, Maruszynski M. Computerized system for quantitative assessment of atherosclerotic plaques in the femoral and iliac arteries visualized by multislice computed tomography. IEEE Trans Biomed Eng 2015;62(6):1490–502.
- [24] Brummer A, Hunt D, Savage V. Improving blood vessel tortuosity measurements via highly sampled numerical integration of the frenet-serret equations. IEEE Trans Med Imaging 2021;40(1):297–309.
- [25] Cortes C, Vapnik V. Support-vector network. Mach Learn 1995;20:273–97.
- [26] Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC. Support vector method for novelty detection. NIPS 1999:582–8.
- [27] Gustafson DE, Kessel WC. Fuzzy clustering with a fuzzy covariance matrix. In: Proc. 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes. p. 761–6.
- [28] Song J, Kouidri S, Bakir F. Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis. Biocybern Biomed Eng 2021;41(1):142–55.
- [29] Weiss D, Cavinato C, Gray A, Ramachandra AB, Avril S, Humphrey JD, et al. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Sci Adv 2020;6(49).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-acff5e06-8bba-42eb-8693-8e38f090ceda