Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 22, iss. 2 | 15--26
Tytuł artykułu

Estimation of the Biochar Effect on Annual Energy Crops Grown in Post-Mining Lands

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ability of biochar as a soil additive to influence productivity, accumulation of heavy metals and thermal characteristics of energy crops was studied. Maize, Sudan grass and Sweet sorghum were grown in containers with low humus black soil and red-brown clay. It turned out that the addition of biochar improves seed germination from 1.5% to 15% and promotes an increase in the growth of aboveground biomass and roots. For Maize and Sweet sorghum plants, the most pronounced effect is revealed on red-brown clay, and for Sudan grass on black soil. Biochar indirectly affects the intensity of accumulation of heavy metals by reducing their mobility and availability to plants. In both variants of the experiment with Maize, the application of biochar had the greatest effect on the accumulation of zinc. In the experiment with Sudan grass on black soil, the greatest effect was observed for manganese, and on red-brown clay for zinc and lead. In the experiment with sugar sorghum, the most pronounced reaction took place for copper on both substrates, and for zinc only on red-brown clay. The biochar addition led to the more complete combustion of the Sweet sorghum biomass grown on black soil and, conversely, increasing the ash content of the biomass grown on red-brown clay. During the combustion of Sudan grass biomass in the trial with red-brown clay, the addition of biochar contributed to the significant reduction in thermolysis duration and shifting of the extremum point of cellulose decomposition to the area of lower temperatures. In the case of Maize biomass, a similar effect was observed, but only in the trial with black soil.
Słowa kluczowe
Wydawca

Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Dnipro University of Technology, Dnipro, 49005, Ukraine
  • Oles Honchar Dnipro National University, Dnipro, 49010, Ukraine
autor
  • Dnipro State Agrarian and Economics University, Dnipro, 49600, Ukraine
  • Girona University Girona, 17003, Spain
  • Girona University Girona, 17003, Spain
Bibliografia
  • 1. Al-Wabel M.I., Usman A.R.A., El-Naggar A.H., Aly A.A., Ibrahim H.M., Elmaghraby S., Al-Omran A. 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences. 22, 503-511
  • 2. Blanco-Canqui H. 2016. Growing Dedicated Energy Crops on Marginal Lands and Ecosystem Services. Soil Science Society of America Journal, 80(4), 845–858. https://doi.org/10.2136/sssaj2016.03.0080
  • 3. Brown R.A., Kercher A.K., Nguyen T.H., Nagle D., Ball W.P. 2006. Production and characterization of synthetic wood chars for use as surrogates for natural sorbent. Organic Geochemistry, 37, 321–333. https://doi.org/10.1016/j.orggeochem.2005.10.008
  • 4. Chaiwong K.,. Kiatsiriroat T., Vorayos N., Thararax C. 2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy,. 56, 600–606. https://doi.org/10.1016/j.biombioe.2013.05.035
  • 5. Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437–444. https://doi.org/10.1071/SR08036
  • 6. Chan, K.Y., Zwieten, L.V., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45, 629–634.
  • 7. Chen D., Liu X., Bian R., Cheng K., Zhang X., Zheng J., Joseph S., Crowley D., Pan G., Li L. 2018. Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 222, 76 –85. https://doi.org/10.1016/j.jenvman.2018.05.004.
  • 8. Clemens S. 2006.Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003
  • 9. Day D., Evans R. J., Lee J.W., Reicosky D. 2005.Economical CO2, SOx, and NOx capture from fossilfuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy, 30(14), 2558–2579. https://doi.org/10.1016/j.energy.2004.07.016
  • 10. Feng Q, Chaubey I., Engel B., Cibin R., Sudheer K.P., Volenec J. 2017. Marginal land suitability for switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). Environmental Modelling and Software, 93, 356–365. https://doi.org/10.1016/j.envsoft.2017.03.027
  • 11. Gang Xu, You Zhang, Junna Sun, Hongbo Shao, 2016. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of The Total Environment, 568, 910–915. https://doi.org/10.1016/j.scitotenv.2016.06.079
  • 12. Gopalakrishnan G., Negri M.C., Snyder S.W. 2011. A Novel Framework to Classify Marginal Land for Sustainable Biomass Feedstock Production. Journal of Environmental Quality, 40(5), 1593–1600. https://doi.org/10.2134/jeq2010.0539
  • 13. Hassan Z., Aarts M.G.M. 2011. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants.Environ. Exp. Biol., 72, 53–63. https://doi.org/10.1016/j.envexpbot.2010.04.003
  • 14. Ibrahim, H.M., Al-Wabel, M.I., Usman, A.R., AlOmran, A., 2013. Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci. 178, 165–173.
  • 15. Ippolito J.A., Laird D.A., Busscher W.J. 2012. Environmental Benefits of Biochar. Journal of Environmental Quality, 41(4), 967–972. https://doi.org/10.2134/jeq2012.0151
  • 16. Jien Shih-Hao, Wang Chien-Sheng. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233. https://doi.org/10.1016/j.catena.2013.06.021
  • 17. Kang S., Post W.P, Nichols J.A., Wang D., West T.O., Bandaru V., Izaurralde R.C. 2013. Marginal Lands: Concept, Assessment and Management. Journal of Agricultural Science, 5(5), 129–139. https://doi.org/10.5539/jas.v5n5p129
  • 18. Kim, H.S., Kim, K.R., Kim, H.J. Yoon J.H., Yang J.E., Ok Y.S., Owens G., Kim K.H. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci., 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1
  • 19. Kharytonov M.M. and Kroik A.A. 2011. Environmental Security of Solid Wastes in the Western Donbas Coal Mining Region, Ukraine. Environmental Security and Ecoterrorism, NATO Science for Peace and Security Series C: Environmental Security, H. Alpaset Al. (Eds.), p. 129-138. https://doi.org/10.1007/978-94-007-1235-5_10
  • 20. Klimkina I., Kharytonov M., Zhukov O. 2018.Trend Analysis of Water-Soluble Salts Leaching Along Surfaces of Reclaimed Mine Dumps in Western Donbass (Ukraine) / Environmental Research, Engineering and Management, Vol. 74, No 2:82-93, doi: 10.5755/j01.erem.74.2.19940
  • 21. Laghari M., Mirjat M.C., Hu Z., Fazal S., Xiao B., Hu M., Chen Z., Guo D. 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. CATENA, 135, 313–320. https://doi.org/10.1016/j.catena.2015.08.013
  • 22. Lehmann J., Joseph S. Biochar for Environmental Management. Science and Technology. Sterling. 2009,VA, USA.
  • 23. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. 2011.Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
  • 24. Mašek O., Brownsort P., Cross A., Sohi S. 2013. Influence of production conditions on the yield and environmental stability of biochar, Fuel, 103, 151–155, https://doi.org/10.1016/j.fuel.2011.08.044.
  • 25. Meharg A.A. 2005. Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil, 274, 163–174. https://doi.org/10.1007/s11104-004-0262-z
  • 26. Mehmood M.A., Ibrahim M., Rashid U., Nawaz M., Ali S., Hussain A., Gull M. 2017. Biomass production for bioenergy using marginal lands. Sustainable Production and Consumption, 9, 3–21. https://doi.org/10.1016/j.spc.2016.08.003.
  • 27. Nalepa R., Bauer D.M. 2012. Marginal lands: the role of remote sensing in constructing landscapes for agrofuel development. The Journal of Peasant Studies, 39(2), 403–422. https://doi.org/10.1080/03066150.2012.665890
  • 28. Navarro M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Vidal J., Tovar P.J., Bech J. 2008. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2–3), 183–193. https://doi.org/10.1016/j.gexplo.2007.04.011.
  • 29. Papadopolos C., Gekaa C., Pavloudakis F., Roumpos C., Andreadou S. 2015. Evaluation of the soil quality on the reclaimed lignite mine land in West Macedonia, Greece. Procedia Earth and Planetary Science, 15, 928–932. https://doi.org/10.1016/j.proeps.2015.08.148
  • 30. Prasad M.N.V. Heavy Metal Stress in Plants. From Biomolecules to Ecosystems. SpringerVerlag Berlin Heidelberg 2004. https://doi.org/10.1007/978-3-662-07743-6
  • 31. Ren X., Zhang P., Zhao L., Sun H. 2016. Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. Environmental Science and Pollution Research, 23, 2724–2734. https://doi.org/10.1007/s11356-015-5518-z.
  • 32. Schulz H., Dunst G., Glaser B. 2013. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev., 33, 817–827. https://doi.org/10.1007/s13593-013-0150-0
  • 33. Shahid M., Dumat C, Khalid S., Schreck E., Xiong T., Niazi N.K. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063.
  • 34. Sohi S.P., Krull E., Lopez-Capel E., Bol R. 2010. Chapter 2 - A review of biochar and its use and function in soil, advances in agronomy. Academic Press, 105, 47–82. https://doi.org/10.1016/S0065-2113(10)05002-9.
  • 35. Spokas K.A., Cantrell K.B., Novak J.M., Archer D.A., Ippolito J.A., Collins H.P., Boateng A.A., Lima I.M., Lamb M.C., McAloon A.J., Lentz R.D., Nichols K.A. 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual., 41, 973–989. doi: https://doi.org/10.2134/jeq2011.0069
  • 36. Stoof, C.R., Richards, B.K., Woodbury, P.B. et al. 2015. Untapped Potential: Opportunities and Challenges for Sustainable Bioenergy Production from Marginal Lands in the Northeast USA. Bioenerg. Res., 8, 482–501. https://doi.org/10.1007/s12155-014-9515-8
  • 37. Strijker D. 2005. Marginal lands in Europe – causes of decline. Basic and Applied Ecology, 6(2), 99–106. https://doi.org/10.1016/j.baae.2005.01.001
  • 38. Toy, T.J, and Hadley, R.F. Geomorphology and reclamation of disturbed lands. United States, 1987.
  • 39. Verheijen, F.G.A., Jeffery, S., Bastos, A.C., van der Velde, M., Diafas, I. 2009. Biochar Application to Soils - A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg.
  • 40. Wang Y., Villamil M.B., Davidson P.C., Akdeniz N. 2019. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of The Total Environment, 685, 741–752. https://doi.org/10.1016/j.scitotenv.2019.06.244
  • 41. Wang Y., Liu Y., Zhan W., Zheng K., Wang J., Zhang C., Chen R. 2020. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Science of the Total Environment, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060.
  • 42. Zhuang D., Jiang D., Liu L., Huang Y. 2011. Assessment of bioenergy potential on marginal land in China. Renewable and Sustainable Energy Reviews, 15(2), 1050–1056. https://doi.org/10.1016/j.rser.2010.11.041
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-acd85ac4-aa9a-4db1-9a41-783e68e39d5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.