Czasopismo
2022
|
Vol. 15, no. 3
|
87--94
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Synthetic dyes are extensively used in various industries like textile and food industry and are responsible for generation of colored and toxic wastewater. The aim of study was to evaluate decolorization efficiency of White Rot Fungi P.ostreatus (strain BWPH) for dyes belonging to different classes: Anthanthrone Red (anthraquinone dye) and Disazo Red (azo dye) having concentration of 0.08g/l. The Daphnia magna immobilization test was performed to check zoo toxicity of samples during and after treatment. The result show that maximum decolorization efficiency achieved for Anthanthrone Red and Disazo Red dye after 168h was 94.31% and 73.13% respectively. The zoo toxicity test reflects that the pure dyes were much less toxic to D.magna at higher concentration. In contrast, the post process samples were more toxic to organism. It reflected production of toxic metabolites because of enzymatic degradation/biotransformation of dye. For anthraquinone dye, post process sample of 0.25 h was less toxic as compared to 168 h sample. Toxicity Unit was 23.52(class IV), and 2.61(class III) respectively for Anthanthrone Red and Disazo Red post process sample. The conducted research showed high potential of BWPH strain for decolorization dyes belonging to different classes. But the mycelium produces toxic substances during the decolorization process. It may be related to the biodegradation of these substances to toxic metabolites. Further studies have indicated to optimize the process of decolorization.
Czasopismo
Rocznik
Tom
Strony
87--94
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- MSc; PhD student; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland, Ruchi.Manishkumar.Upadhyay@polsl.pl
autor
- Associate Prof.; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
Bibliografia
- [1] R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, and Y. Deng, (2009). Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH, J. Hazard. Mater., 170(1), 141-143. doi: 10.1016/j.jhazmat.2009.04.122.
- [2] Y. Wu, T. Li, and L. Yang, (2012). Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review, Bioresour. Technol., 107, 10-18. doi: 10.1016/j.biortech.2011.12.088.
- [3] Z. Ghobadi Nejad, S. M. Borghei, and S. Yaghmaei, (2019). Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism, Int. J. Environ. Sci. Technol., 16(12), 7805-7816, doi: 10.1007/s13762-019-02226-5.
- [4] A. Pandey, P. H. Tripathi, A. H. Tripathi, S. C. Pandey, and S. Gangola, (2019). Omics technology to study bioremediation and respective enzymes. Elsevier Inc.
- [5] M. Solís, A. Solís, H. I. Pérez, N. Manjarrez, and M. Flores, (2012). Microbial decolouration of azo dyes: A review, Process Biochem., 47(12), 1723-1748, doi: 10.1016/j.procbio.2012.08.014.
- [6] R. G. Saratale et al., (2013). Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS, J. Biosci. Bioeng., 115(6), 658-667. doi: 10.1016/j.jbiosc.2012.12.009.
- [7] M. Berradi et al., (2019). “Textile finishing dyes and their impact on aquatic environs,” Heliyon, 5(11), doi: 10.1016/j.heliyon.2019.e02711.
- [8] M. Qin et al., (2018). Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye, J. Mater. Sci. Mater. Electron., 29(11), 9740-9744, doi: 10.1007/s10854-018-9011-6.
- [9] D. Kalpana, N. Velmurugan, J. H. Shim, B. T. Oh, K. Senthil, and Y. S. Lee, (2012). Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus, J. Environ. Manage., 111, 142-149. doi: 10.1016/j.jenvman.2012.06.041.
- [10] S. Rodríguez-Couto, (2017). Industrial and environmental applications of white-rot fungi, Mycosphere, 8(3), 456-466, doi: 10.5943/mycosphere/8/3/7.
- [11] C. Y. Lai, C. H. Wu, C. T. Meng, and C. W. Lin, (2017). Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode, Appl. Energy, 188, 392-398, doi: 10.1016/j.apenergy.2016.12.044.
- [12] S. Rodríguez-Couto, J. F. Osma, and J. L. Toca-Herrera, (2009). “Removal of synthetic dyes by an eco-friendly strategy,” Eng. Life Sci., 9(2), 116-123, doi: 10.1002/elsc.200800088.
- [13] A. Grelska and M. Noszczyńska, (2020). White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater, Environ. Sci. Pollut. Res., 27(32), 39958-39976, doi: 10.1007/s11356-020-10382-2.
- [14] M. Jureczko, W. Przystaś, T. Krawczyk, W. Gonciarz, and K. Rudnicka, (2021). White-rot fungi-mediated biodegradation of cytostatic drugs - bleomycin and vincristine, J. Hazard. Mater., 407(July 2020), doi: 10.1016/j.jhazmat.2020.124632.
- [15] G. A. L. Vieira et al., (2021). Marine associated microbial consortium applied to RBBR textile dye detoxification and decolorization: Combined approach and metatranscriptomic analysis, Chemosphere, 267. doi: 10.1016/j.chemosphere.2020.129190.
- [16] M. Jureczko and W. Przystaś, (2019). Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment, Ecotoxicol. Environ. Saf., 172(October 2018), 210-215, doi: 10.1016/j.ecoenv.2019.01.074.
- [17] J. A. Mir-Tutusaus, R. Baccar, G. Caminal, and M. Sarrà, (2018). Can white-rot fungi be a real waste-water treatment alternative for organic micropollutants removal? A review, Water Res., 138, 137-151, doi: 10.1016/j.watres.2018.02.056.
- [18] T. Hadibarata and R. A. Kristanti, (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022, Bioprocess Biosyst. Eng., 36(4), 461-468, doi: 10.1007/s00449-012-0803-4.
- [19] M. Gahlout, S. Gupte, and A. Gupte, (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1, 3 Biotech, 3(2), 143-152, doi: 10.1007/s13205-012-0079-z.
- [20] S. Chakraborty, B. Basak, S. Dutta, B. Bhunia, and A. Dey, (2013). Bioresource Technology Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6, 147, 662-666, doi: 10.1016/j.biortech.2013.08.117.
- [21] T. Hadibarata, A. R. M. Yusoff, and R. A. Kristanti, (2012). Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions, Water. Air. Soil Pollut., 223(8), 4669-4677, doi: 10.1007/s11270-012-1177-6.
- [22] R. Lu et al., (2016). White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations, Bioprocess Biosyst. Eng., 39(3), 381-390, doi: 10.1007/s00449-015-1521-5.
- [23] P. D. Kunjadia, G. V. Sanghvi, A. P. Kunjadia, P. N. Mukhopadhyay, and G. S. Dave, (2016). Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes, Springerplus, 5(1), doi: 10.1186/s40064-016-3156-7.
- [24] R. Alam et al., (2021). Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment, J. Hazard. Mater., 405(July), 124176, doi: 10.1016/j.jhazmat.2020.124176.
- [25] W. Przystaś, E. Zabłocka-Godlewska, and E. Grabińska-Sota, (2018). Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Brazilian J. Microbiol., 49(2), 285-295, doi: 10.1016/j.bjm.2017.06.010.
- [26] M. J. Puchana-Rosero et al., (2017). Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution, Environ. Sci. Pollut. Res., 24(4), 4200-4209, doi: 10.1007/s11356-016-8153-4.
- [27] A. A. F. Mostafa, M. S. Elshikh, A. A. Al-Askar, T. Hadibarata, A. Yuniarto, and A. Syafiuddin, (2019). “Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium, Bioprocess Biosyst. Eng., 42(9), 1483-1494, doi: 10.1007/s00449-019-02144-3.
- [28] B. L. Alderete et al., (2021). Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment, Chemosphere, 263. doi: 10.1016/j.chemosphere.2020.128291.
- [29] T. Robinson, B. Chandran, and P. Nigam, (2001). Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes, Enzyme Microb. Technol., 29(8-9), 575-579, doi: 10.1016/S0141-0229(01)00430-6.
- [30] M. C. Collivignarelli, A. Abbà, M. Carnevale Miino, and S. Damiani, (2019). Treatments for color removal from wastewater: State of the art, J. Environ. Manage., 236(October 2018), 727-745. doi: 10.1016/j.jenvman.2018.11.094.
- [31] W. Przystas, E. Zablocka-Godlewska, and E. Grabinska-Sota, (2012). Biological removal of azo and triphenylmethane dyes and toxicity of process by-products, Water. Air. Soil Pollut., 223(4), 1581-1592, doi: 10.1007/s11270-011-0966-7.
- [32] W. Przystaś, E. Zabłocka-Godlewska, and E. Grabińska-Sota, (2019). Pleurotus ostreatus as a species with potentially high effectiveness in the removal of synthetic dyes belonging to different classes, Desalin. Water Treat., 161, 376-386, doi: 10.5004/dwt.2019.24314.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ac5f4fbb-5b51-4304-a094-44fdca50851c