Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | no. 62 | 174--184
Tytuł artykułu

Does the karst spring improve fish abiotic habitat in mountain streams?

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mountain streams constitute challenging habitat for many fish species due to rapid and variable flow, cool temperature, and limited food resources. Groundwaters recharge by karst spring may however mitigate harsh habit conditions of mountain streams providing niches for different fish species. This study aims to assess the suitability of mountain streams, replenished by karst springs, for various fish species like alpine bullhead, European grayling, brown and brook trout. The study was conducted in the Chochołowski Stream in the Western Tatra Mountains, Poland. The assessment of abiotic habitat is based on different characteristics of hydrological and thermal regimes as well as water chemical composition investigated between 01.09.2012 and 31.09.2014. The findings reveal that: 1) downstream variability of habitat abiotic conditions (such as water temperature, flow, water chemical composition) may affect the distribution of fish species, 2) karst springs contribute up to 100% of the stream’s recharge during periods of winter low flow, 3) karstic groundwater reduces the variability and amplitudes of stream water temperature and weaken the periodicity in water temperature associated with daily course of air temperature and solar radiation, 4) groundwaters prevent stream freezing in winter and moderate summer temperatures, 5) increasing mineralisation of water below the spring recharge may positively affect fish distribution. The findings underscore the importance of karst springs in modifying the abiotic conditions of fish habitat in mountain streams.
Wydawca

Rocznik
Tom
Strony
174--184
Opis fizyczny
Bibliogr. 77 poz., fot., rys., tab., wykr.
Twórcy
  • Jagiellonian University in Kraków, Institute of Geography and Spatial Management, Department of Hydrology, Gronostajowa 7, 30-387 Kraków, Poland, agnieszka.rajwa@uj.edu.pl
  • Jagiellonian University in Kraków, Institute of Geography and Spatial Management, Department of Hydrology, Gronostajowa 7, 30-387 Kraków, Poland, anna.bojarczuk@uj.edu.pl
Bibliografia
  • Baker, D. et al. (2004) “A new flashiness index: Characteristics and applications to midwestern rivers and streams,” Journal of the American Water Resources Association, 40(2), pp. 503–522. Available at: https://doi.org/10.1111/j.1752-1688.2004.tb01046.x.
  • Baran, R. et al. (2015) “Abundance of Cottus poecilopus is influenced by O2 saturation, food density and Salmo trutta in three tributaries of the Rožnovská Bečva River, Czech Republic,” Journal of Fish Biology, 86(2), pp. 805–811. Available at: https://doi.org/10.1111/jfb.12565.
  • Benstead, J.P., Valett, H.M. and Webster, J.R. (2009) “Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient?,” Journal of the North American Benthological Society, 28(2), pp. 365–379. Available at: https://doi.org/10.1899/0887-3593(2006)25[330:ALBRAU]2.0.CO;2.
  • Beracko, P. and Revajová, A. (2019) “Benthic life in karst spring – The life cycle and secondary production of benthic macroinvertebrates under the effects of constant water temperature,” Limnologica, 74, pp. 51–60. Available at: https://doi.org/10.1016/j.limno.2018.11.002.
  • Bernier-Bourgault, I. and Magnan, P. (2002) “Factors affecting redd site selection, hatching, and emergence of brook charr, Salvelinus fontinalis, in an artificially enhanced site,” Environmental Biology of Fishes, 64, pp. 333–341. Available at: https://doi.org/10.1023/A:1016006303854.
  • Billard, R. et al. (1997) “Motility of European catfish Silurus glanis spermatozoa in testes and in milt,” Polish Archives of Hydrobiology, 44, pp. 115–122.
  • Bozek, M.A. and Rahel, F.J. (1991) “Assessing habitat requirements of young Colorado River cutthroat trout by use of macrohabitat and microhabitat analyses,” Transactions of the American Fisheries Society, 120, pp. 571–581. Available at: https://doi.org/10.1577/1548-8659(1991)120<0571:AHROYC>2.3.CO;2.
  • Bruslé, J. and Quignard, J.P. (2001) Biologie des poissons d'eau douce européens [Biology of European freshwater fish]. Paris: Tec & Doc.
  • Cantonati, M. et al. (2022) “Using springs as sentinels of climate change in nature Parks North and South of the Alps: A critical evaluation of methodological aspects and recommendations for long-term monitoring,” Water, 14, 2843, pp. 1–29. Available at: https://doi.org/10.3390/w14182843.
  • Chen, Y. et al. (2021) “Identification of preferential recharge zones in karst systems based on the correlation between the spring level and precipitation: A case study from Jinan spring basin,” Water, 13(21), 3048, pp. 1–19. Available at: https://doi.org/10.3390/w13213048.
  • Cíbik, J. et al. (2022) “Are springs hotspots of benthic invertebrate diversity? Biodiversity and conservation priority of rheocrene springs in the karst landscape,” Aquatic Conservation: Marine and Freshwater Ecosystems, 32(5), pp. 843–858. Available at: https://doi.org/10.1002/aqc.3802.
  • Cotel, A.J., Webb, P.W. and Tritico, H. (2006) “Do brown trout choose locations with reduced turbulence?” Transactions of the American Fisheries Society, 135(3), pp. 610–619. Available at: https://doi.org/10.1577/T04-196.1.
  • Crisp, D.T. (1996) “Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects,” Hydrobiologia, 323, pp. 201–221. Available at: https://doi.org/10.1007/BF00007847.
  • Dufresne, C. et al. (2020) “Karst and urban flood-induced solid discharges in Mediterranean coastal rivers: The case study of las river (SE France),” Journal of Hydrology, 590, 125194. Available at: https://doi.org/10.1016/j.jhydrol.2020.125194.
  • Dyk, V. (2014) “The characteristics of grayling biotopes,” Acta Veterinaria Brno, 53(1–2), pp. 71–80. Available at: https://doi.org/10.2754/avb198453010071.
  • Dynowski, P. et al. (2015) “Ichtiofauna Filipczańskiego Potoku w Tatrzańskim Parku Narodowym na tle wybranych parametrów środowiska [The ichthyofauna of Filipczański Stream in Tatra National Park against a background of selected environmental parameters],” in A. Chrobak and B. Godzik (eds.) Przyroda Tatrzańskiego Parku Narodowego. Nauka Tatrom. Vol. 2. Nauki biologiczne. Materiały V Konferencji Przyroda Tatrzańskiego Parku Narodowego a człowiek [Nature of the Tatra National Park. Science for the Tatra Mountains. Vol. 2. Biological Sciences. Materials of the 5th Conference Nature of the Tatra National Park and Man], Zakopane, 24–26 Sep 2015. Zakopane: Wydaw. TPN, pp. 19–24.
  • Fraser, J.M. (1985) “Shoal spawning of brook trout, Salvelinus fontinalis, in a Precambrian shield lake,” Le Naturaliste Canadien, 112, pp. 163–174.
  • Grinsted, A., Moore, J.C. and Jevrejeva, S. (2004) “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Processes in Geophysics, 11(5/6), pp. 561–566. Available at: https://doi.org/10.5194/npg-11-561-2004.
  • Groot, C. (1996) “Chapter 3 – Salmonid life histories,” in W. Pennel and B. Burton (eds.) Developments in aquaculture and fisheries science, Vol. 29. Elsevier, pp. 97–230. Available at: https://doi.org/10.1016/S0167-9309(96)80006-8.
  • Heggenes, J. (1988) “Effects of short-term flow fluctuations on displacement of, and habitat use by, brown trout in a small stream,” Transactions of the American Fisheries Society, 117(4), pp. 336–344. Available at: https://doi.org/10.1577/1548-8659(1988)117<0336:EOSFFO>2.3.CO;2.
  • Hess, M. (1965) “Piętra klimatyczne w Polskich Karpatach Zachodnich [Climatic zones in the Polish Western Carpathians],” Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Geograficzne, 11.
  • Hitt, N.P. et al. (2023) “Stabilising effects of karstic groundwater on stream fish communities,” Ecology of Freshwater Fish, 32(3), pp. 538–551. Available at: https://doi.org/10.1111/eff.12705.
  • Isaak, D.J. et al. (2012) “The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century,” Global Change Biology, 21(7), pp. 2540–2553. Available at: https://doi.org/10.1111/gcb.12879.
  • Isaak, D.J. et al. (2013) “The NorWeST summer stream temperature model and scenarios for the western US: A crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams,” Water Resources Research, 49(12), pp. 9181–9205. Available at: https://doi.org/10.1002/2017WR020969.
  • Janiga, M. et al. (2023) “Differences in the synergic accumulation of toxic elements in pelagic and benthic fish from glacier-fed rivers of the Dzungarian Alatau,” Ekológia (Bratislava), 42(4), pp. 310–318. Available at: https://doi.org/10.2478/eko-2023-0034.
  • Kerr, S.J. and Grant, R.E. (2000) Ecological impacts of fish introductions: Evaluating the risk. Peterborough: Fish and Wildlife Branch, Ontario Ministry of Natural Resources.
  • Kottelat, M. and Freyhof, J. (2007) Handbook of European freshwater fishes. Cornol, Switzerland: Publications Kottelat.
  • Kotusz, J. et al. (2004) “Distribution, density and habitat of Cottus poecilopus (Heckel, 1836) in Lake Hancza (North East Poland) as compared with the situation in the Luzin lakes (North East Germany),” Verhandlungen der Gesellschaft für Ichthyologie Band, 4, pp. 91–105. Available at: http://gnl-kratzeburg.de/wp-content/uploads/2023/01/kotusz%20et%20al%20cottus%20poeci-lopus%20in%20lakes%20hancza%20and%20luzin.pdf (Accessed: August 6, 2024).
  • Kozłowski, K. et al. (2017) “Vertical distribution of Cottus poecilopus Heckel, 1837 in streams of Tatra National Park in Poland”, in Environmental Engineering. 10 th International Conference on Environmental Engineering, ICEE, Lithuania, 27–28 Apr 2017. Vilnius Gediminas Technical University, pp. 1–7. Available at: https://doi.org/10.3846/enviro.2017.032.
  • Köppen, W.P. (1931) Grundriss der Klimakunde [Outline of climate science]. Berlin, Leipzig: Walter de Gruyter & Co.
  • Kuciński, M. et al. (2021) “Genetic characteristics of brown trout Salmo trutta from the Tatra National Park in Poland,” Turkish Journal of Fisheries and Aquatic Sciences, 21(10), pp. 479–490. Available at: https://doi.org/10.4194/1303-2712-v21_10_01.
  • Kuglerová, L. et al. (2021) “Multiple stressors in small streams in the forestry context of Fennoscandia: The effects in time and space,” Science of the Total Environment, 756, 143521. Available at: https://doi.org/10.1016/j.scitotenv.2020.143521.
  • Kukuła, K. and Bylak, A. (2020) “Synergistic impacts of sediment generation and hydrotechnical structures related to forestry on stream fish communities,” Science of The Total Environment, 737, 139751. Available at: https://doi.org/10.1016/j.scitotenv.2020.139751.
  • Kukuła, K. and Bylak, A. (2022) “Barrier removal and dynamics of intermittent stream habitat regulate persistence and structure of fish community,” Scientific Reports, 12, 1512. Available at: https://doi.org/10.1038/s41598-022-05636-7.
  • Kurylyk, B.L. et al. (2015) “Preserving, augmenting, and creating coldwater thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada),” Ecohydrology, 8, pp. 1095–1108. Available at: https://doi.org/10.1002/eco.1566.
  • Lai, G. et al. (2019) “Diatom biodiversity in karst springs of Mediterranean geographic areas with contrasting characteristics: Islands vs mainland,” Water, 11(12), 2602. Available at: https://doi.org/10.3390/w11122602.
  • Legalle, M. et al. (2005) “Ontogenetic microhabitat shifts in the bullhead, Cottus gobio L., in a fast flowing stream,” International Review of Hydrobiology, 90(3), pp. 310–321. Available at: https://doi.org/10.1002/iroh.200410781.
  • Liu, X. and Wang, H. (2018) “Effects of loss of lateral hydrological connectivity on fish functional diversity,” Conservation Biology, 32(6), pp. 1336–1345. Available at: https://doi.org/10.1111/cobi.13142.
  • Louhi, P., Mäki-Petäys, A. and Erkinaro, J. (2008) “Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors,” River Research and Applications, 24(3), pp. 330–339. Available at: https://doi.org/10.1002/rra.1072.
  • Mignien, L. and Stoll, S. (2023) “Effects of high and low flows on abundances of fish species in Central European headwater streams: The role of ecological species traits,” Science of The Total Environment, 888, 163944. Available at: https://doi.org/10.1016/j.scitotenv.2023.163944.
  • Mikołajczyk, T. and Nawrocki, P. (2019) “Forest management practices and the occurrence of suspended solids in rivers and streams and their influence on ichthyofauna and river ecosystems,” Forest Research Papers, 80(4), pp. 269–276. Available at: https://doi.org/10.2478/frp-2019-0027.
  • Mittelbach, G.G. and Persson, L. (1998) “The ontogeny of piscivory and its ecological consequences,” Canadian Journal of Fisheries and Aquatic Sciences, 55(6), pp. 1454–1465. Available at: https://doi.org/10.1139/f98-041.
  • Meyer, L. (2001) “Spawning migration of grayling Thymallus thymallus (L., 1758) in a Nothern german lowland river,” Archiv für Hydrobiologie, 52, pp. 99–117. Available at: https://doi.org/10.1127/archiv-hydrobiol/152/2001/99.
  • Mundahl, N.D. and Mundahl, E.D. (2022) “Aquatic community structure and stream habitat in a karst agricultural landscape,” Ecological Processes, 11, 18. Available at: https://doi.org/10.1186/s13717-022-00365-1.
  • Nuhfer, A.J., Zorn, T.G. and Wills, T.C. (2017) “Effects of reduced summer flows on the brook trout population and temperatures of a groundwater-influenced stream,” Ecology of Freshwater Fish, 26, pp. 108–119. Available at: https://doi.org/10.1111/eff.12259.
  • Nykänen, M. and Huusko, A. (2002) “Suitability criteria for spawning habitat of riverine european grayling,” Journal of Fish Biology, 60(5), pp. 1351–1354. Available at: https://doi.org/10.1111/j.1095-8649.2002.tb01730.x.
  • Ombredane, D. et al. (1996) “Migration et smoltification des juvéniles de truite (Salmo trutta) dans deux cours d'eau de Basse-Normandie Migration and smoltification of young brown trout (Salmo trutta) in two Basse-Normandie rivers],” Cybium, 20(3) Supp., pp. 27–42. Available at: https://doi.org/10.26028/cybium/1996-203supp-003.
  • Oomen, R.A. and Hutchings, J.A. (2015) “Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish,” Conservation Physiology, 3(1), cov027. Available at: https://doi.org/10.1093/conphys/cov027.
  • Ovidio, M. et al. (2004) “Spawning movements of European grayling Thymallus thymallus in the River Aisne (Belgium),” Folia Zoologica, 53(1), pp. 87–98. Available at: https://www.ivb.cz/wp-content/uploads/53_87-98.pdf (Accessed: August 6, 2024).
  • Persat, H. (2011) “L'ombre commun Thymallus thymallus (Linnnaeus, 1758) [Common grayling Thymallus thymallus (Linnnaeus, 1758)],” in P. Keith et al. (eds.) Les poissons d’eau douce de France [Freshwater fish of France]. Paris: Meze:Biotope, pp. 413–415.
  • Pociask-Karteczka, J. et al. (2018) “Natural hazards in Poland” in D. Bartlett and R. Singh (eds.) Exploring natural hazards. Boca Raton: Chapman and Hall/CRC, pp. 317–346.
  • Rajwa-Kuligiewicz, A., Bialik, R.J. and Rowiński, P.M. (2016) “Wavelet characteristics of hydrological and dissolved oxygen time series in a lowland river,” Acta Geophysica, 64(3), pp. 649–669. Available at: https://doi.org/10.1515/acgeo-2016-0023.
  • Rajwa-Kuligiewicz, A. and Bojarczuk, A. (2024a) “Evaluating the impact of climatic changes on streamflow in headwater mountain catchments with varying human pressure. An example from the Tatra Mountains (Western Carpathians),” Journal of Hydrology: Regional Studies, 53, 101755. Available at: https://doi.org/10.1016/j.ejrh.2024.101755.
  • Rajwa-Kuligiewicz, A. and Bojarczuk, A. (2024b) “Streamflow response to catastrophic windthrow and forest recovery in subalpine spruce forest,” Journal of Hydrology, 634, 131078. Available at: https://doi.org/10.1016/j.jhydrol.2024.131078.
  • Reyjol, Y. et al. (2009) “Effects of temperature on biological and biochemical indicators of the life-history strategy of bullheads Cottus gobio,” Journal of Fish Biology, 75, pp. 1427–1445. Available at: https://doi.org/10.1111/j.1095-8649.2009.02373.x.
  • Rosenfeld, J. and Boss, S. (2001) “Fitness consequences of habitat use for juvenile cutthroat trout: Energetic costs and benefits in pools and riffles,” Canadian Journal of Fisheries and Aquatic Sciences, 58(3), pp. 585–593. Available at: https://doi.org/10.1139/f01-019.
  • Sear, D.A. et al. (2016) “Does fine sediment source as well as quantity affect salmonid embryo mortality and development?,” Science of the Total Environment, 541, pp. 957–968. Available at: https://doi.org/10.1016/j.scitotenv.2015.09.155.
  • Sempeski, P. and Gaudin, P. (1995) “Habitat selection by grayling – I. Spawning habitats,” Journal of Fish Biology, 47(2), pp. 256–265. Available at: https://doi.org/10.1111/j.1095-8649.1995.tb01893.x.
  • Smialek, N., Pander, J. and Geist, J. (2021) “Environmental threats and conservation implications for Atlantic salmon and brown trout during their critical freshwater phases of spawning, egg development and juvenile emergence,” Fisheries Management and Ecology, 28, pp. 437–467. Available at: https://doi.org/10.1111/fme.12507.
  • Smieja, A. (2014) “Flora in the Polish Tatra Mountains – habitat and phytosociological characteristics of crenophiles,” Biodiversity. Research and Conservation, 36, pp. 25–36. Available at: https://doi.org/10.2478/biorc-2014-0011.
  • Snucins, E.J. Curry, R.A. and Gunn, J.M. (1992) “Brook trout (Salvelinus fontinalis) embryo habitat and timing of alevin emergence in a lake and a stream,” Canadian Journal of Zoology, 70, pp. 423–427. Available at: https://doi.org/10.1139/z92-064.
  • Sternecker, K., Wild, R. and Geist, J. (2013) “Effects of substratum restoration on salmonid habitat quality in a subalpine stream,” Environmental Biology of Fishes, 96, pp. 1341–1351. Available at: https://doi.org/10.1007/s10641-013-0111-0.
  • Sullivan, C.J. et al. (2021) “An ecohydrological typology for thermal refuges in streams and rivers,” Ecohydrology, 14, e2295. Available at: https://doi.org/10.1002/eco.2295.
  • Sutherland, A.B. and Meyer, J.L. (2007) “Effects of increased suspended sediment on growth rate and gill condition of two southern Appalachian minnows,” Environmental Biology of Fishes, 80, pp. 389–403. Available at: https://doi.org/10.1007/s10641-006-9139-8.
  • Teears, T.D. et al. (2020) “Water chemistry and light effects on survival of hatching salmonids in spring channels,” Journal of Freshwater Ecology, 35(1), pp. 13–28. Available at: https://doi.org/10.1080/02705060.2019.1710584.
  • Teletchea, S. and Teletchea, F. (2020) STOREFISH 2.0: A database on the reproductive strategies of teleost fishes. Database, XXXX, X, art. ID baaa09. Available at: https://doi.org/10.1093/database/baaa095.
  • Tomlinson, M.L. and Perrow, M.R. (2003) “Ecology of the bullhead Cottus gobio,” Conserving Natura 2000 Rivers. Ecology Series, 4. Peterborough: English Nature.
  • Torrence, C. and Compo, G. (1988) “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, 79, pp. 61–78. Available at: https://doi.org/10.1175/1520-0477(1998) 079<0061:APGTWA>2.0.CO;2.
  • Vøllestad, L.A. (2024) “Environmental determinants of spawning location, and density and size of age-0 brown trout Salmo trutta in a small boreal stream,” in J. Lobon-Cervia, P. Budy and R. Gresswell (eds.) Advances in the ecology of stream-dwelling salmonids. Fish & Fisheries Series, 44. Cham: Springer, pp. 39–61. Available at: https://doi.org/10.1007/978-3-031-44389-3_3.
  • Vøllestad, L.A., Olsen, E.M., Forseth, T. (2002) “Growth-rate variation in brown trout in small neighbouring streams: evidence for density-dependence?,” Journal of Fish Biology, 61, pp. 1513–1527. Available at: https://doi.org/10.1111/j.1095-8649.2002.tb02494.x.
  • Volkoff, H. and Rønnestad, I. (2020) “Effects of temperature on feeding and digestive processes in fish,” Temperature, 7(4), pp. 307–320. Available at: https://doi.org/10.1080/23328940.2020.1765950.
  • Wang, Y., Wang, L. and Kuo, R. (2022) “Relationships between fish communities and habitat before and after a typhoon season in tropical mountain streams,” Water, 14(14), 2220. Available at: https://doi.org/10.3390/w14142220.
  • Witkowski, A. and Kowalewski, M. (1988) “Migration and structure of spawning population of European grayling Thymallus thymallus (L.) in the Dunajec basin,” Archiv für Hydrobiologie, 112, pp. 279–297. Available at: https://doi.org/10.1127/archiv-hydro-biol/112/1988/279.
  • Wojtal, A. (2013) “Species composition and distribution of diatom assemblages in spring waters from various geological formations in southern Poland,” Biblioteca Diatomologica, 59. Available at: https://www.schweizerbart.de/publications/detail/isbn/9783443570507 (Accessed: August 7, 2024).
  • Wood, P. and Armitage, P. (1997) “Biological effects of fine sediment in the lotic environment,” Environmental Management, 21, pp. 203–217. Available at: https://doi.org/10.1007/s002679900019.
  • Wyżga, B. et al. (2009) “Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians,” River Research Application, 25(5), pp. 517–536. Available at: https://doi.org/10.1002/rra.1237.
  • Żelazny, M. et al. (2018) “Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland,” Journal of Hydrology, 564, pp. 824–835. Available at: https://doi.org/10.1016/j.jhydrol.2018.07.051.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ac3cbcc0-4eb4-4703-8660-162a34b281e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.