Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 46, nr 3 | 164--175
Tytuł artykułu

Pile–Soil Interaction during Static Load Test

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study highlights the possibility of determining the shear stress distribution along the skin of a pile, which represents skin resistance. Geotechnical engineering is plagued by the challenge of designing appropriate piles as a sufficient foundation construction while being economically justified solution. Static load testing facilitates verification if the pile satisfies these requirements. In most cases, the pile skin resistance is undervalued. This study first introduces the general approach based on static load test results using an appropriate mathematical approach in the presence of linear, vertical shear stress distribution boundary conditions as well as phenomena such as pile shortening and Kirchhoff’s principle. Moreover, a scientific approach for pile compression and shear stress distribution is presented. Further, the study expands upon previous work by applying mathematical calculus to displacement piles. The promising results indicate that further work on greater number of piles may lead to a better understanding of pile–soil interaction and a more accurate design process.
Wydawca

Rocznik
Strony
164--175
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Azzouz, A. S., M. M. Baligh, and A. J. Whittle. 1990. “Shaft resistance of piles in clay.” J. Geotech. Eng. 116(2): 205-221.
  • [2] Briaud, J. and L. Tucker. 1984. “Piles in sand: A method including residual stress.” J. Geotech. Eng. 110(11): 1666-1680.
  • [3] Briaud, J. L. 2013. “Geotechnical engineering: Unsaturated and saturated soils.” Wiley, New Jersey.
  • [4] Brinch Hansen, J. 1970. “A revised and extended formula for bearing capacity.” Danish Geotechnical Institute, Bull, Copenhagen.
  • [5] Chin, F. K. 1970. “Estimation of ultimate load of piles not carried to failure.” Proceedings 2nd Southeast Asia Conference on Soil Engineering: 81–92.
  • [6] Di Donna, A., A. Ferrari, and L. Laloui. 2016. “Experimental investigations of the soil–concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures.” Can. Geotech. J. 53: 1–14. http://dx.doi. org/10.1139/cgj-2015-0294
  • [7] Fioravante, V. 2002. “On the shaft friction modelling of non-displacement piles in sand.” Soils Found. 42(2): 23–33.
  • [8] Fleming, W. G. K. 1992. “A new method for single pile settlement prediction and analysis.” Géotechnique 42(3): 411–425.
  • [9] Galvis-Castro, A. C., D. Tovar-Valencia Ruben, R. Salgado, and M. Prezzi. 2019. “Compressive and tensile shaft resistance of nondisplacement piles in sand.” J. Geotech. Geoenviron. Eng. 145(9): 04019041.
  • [10] Glazer, Z. 1977. “Mechanika gruntów” in Polish. Wydawnictwa Geologiczne, Warszawa.
  • [11] Gumny, K., PhD. 2021. “Soil-structure interaction in single pile-raft foundation.” West Pomeranian University of Technology in Szczecin, Szczecin.
  • [12] Gwizdała, K. 1996. “Analiza osiadań pali przy wykorzystaniu funkcji transformacyjnych” in Polish. Zeszyty Naukowe Politechniki Gdańskiej, Nr 532, Budownictwo Wodne Nr 41.
  • [13] Gwizdała, K., and M. Stęczniewski. 2015. “Wykorzystanie metody funkcji transformacyjnych do analizy nośności i osiadań pali CFA” in Polish. Inżynieria Morska i Geotechnika 2015(3): 433–437.
  • [14] Ismael, N. F. 1989. “Skin friction of driven piles in calcareous sands.” J. Geotech. Eng. 115(1): 135–139.
  • [15] Jardine, R. J., R. Standing Jr., and F. Chow. C. 2006. “Some observations of the effects of time on the capacity of piles driven in sand.” Géotechnique 56(4): 227–244.
  • [16] Lee, C. Y., and H. G. Poulos. 1991. “Tests on model instrumented grouted piles in offshore calcareous soil.” J. Geotech. Eng. 117(11): 1738–1753.
  • [17] Lehane, B. M., R. J. Jardine, A. J. Bond, and R. Frank. 1993. “Mechanisms of shaft friction in sand from instrumented pile tests,” J. Geotech. Eng. 119(1): 19–35
  • [18] Le Kouby, A., J. C. Dupla, J. Canou, and R. Francis. 2013. “Pile response in sand: Experimental development and study.” Int. J. Physical Model. Geotech. 13(4): 122–137.
  • [19] Mazurkiewicz, B. 1966; “Sprawdzanie dopuszczalnej nośności pali w terenie. Cz. 2” in Polish. Inżynieria i budownictwo nr 6: 214–218.
  • [20] Meyer, Z., and M. Kowalów. 2010. “Model krzywej aproksymującej wyniki testów statycznych pali” in Polish. Inżynieria Morska i Geotechnika 3: 438–441.
  • [21] Meyer, Z., and P. Siemaszko. 2019. “Static load test analysis based on soil field investigations.” Bull. Pol. Acad. Sci.: Tech Sci. 67(2): 329–337.
  • [22] Meyer, Z., and P. Siemaszko. 2021. “Analysis of the pile skin resistance formation.” Studia Geotechnica et Mechanica 43(4): 380–388.
  • [23] Meyer, Z., and K. Stachecki. 2018. “Static load test curve (Q–s) conversion in to pile of different size.” Ann. Warsaw Univ. Life Sci. – SGGW 50: 171–182.
  • [24] Meyer, Z., and K. Żarkiewicz. 2018. “Skin and toe resistance mobilisation of pile during laboratory static load test.” Studia Geotechnica et Mechanica 40: 1–5.
  • [25] Miller, G. A., and A. J. Lutenegger. 1997. “Influence of pile plugging on skin friction in over consolidated clay.” J. Geotech. Geoenviron. Eng. 123(6): 525–533.
  • [26] Mochtar, I. B., and T. B. Edil. 1988. “Shaft resistance of model pile in clay.” J. Geotech. Eng. 114(11): 1227–1244.
  • [27] N-Geo. 2018. “Soil geotechnical parameters based on CPTu investigation.” Part of the “Nowa Przystań” project documentation.
  • [28] Siemaszko, P., PhD. 2022. “Analysis of the pile shortening effect on skin resistance formation.” West Pomeranian Institute of Technology in Szczecin, Szczecin.
  • [29] Tehrani, F. S., F. Han, R. Salgado, M. Prezzi, R. D. Tovar, and A. G. Gastro. 2016. “Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand.” Géotechnique 66(5): 386–400.
  • [30] Terzaghi, K., and R. B. Peck. 1967. “Soil mechanics in engineering practice.” Wiley and Sons, New York.
  • [31] Thilakasiri, H. S. 2007. “Qualitative interpretation of load-settlement curves of bored piles.” Eng.: J. Inst. Eng. (Sri Lanka) 40(4): 61–68.
  • [32] Tomlinson, M., and J. Woodward. 2008. “Pile design and construction practice.” Taylor and Francis London, New York.
  • [33] Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63(5): 341–354. http://dx.doi.org/10.1680/ geot.11.P.117
  • [34] Żarkiewicz, K., PhD. 2017. “Analysis of pile shaft bearing capacity formation in non-cohesive soils based on laboratory model investigation” in Polish. West Pomeranian University of Technology in Szczecin, Szczecin
  • [35] Project documentation by FBA for “Nowa Przystań” address Leona Heyki 3 Szczecin.
  • [36] Scientific description of the static load test results with extensometers for “Nowa Przystań” address Leona Heyki 3 Szczecin.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ac2fe2c9-9f5f-474b-bcf8-197a2d430663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.