Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 17, no. 4 | 9--16
Tytuł artykułu

Support Vector Machine and Probability Neural Networks in a Device-Free Passive Localization (DFPL) Scenario

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The holy grail of tracking people indoors is being able to locate them when they are not carrying any wireless tracking devices. The aim is to be able to track people just through their physical body interfering with a standard wireless network that would be in most peoples home. The human body contains about 70% water which attenuates the wireless signal reacting as an absorber. The changes in the signal along with prior fingerprinting of a physical location allow identification of a person’s location. This paper is focused on taking the principle of Device-free Passive Localisation (DfPL) and applying it to be able to actually distinguish if there is more than one person in the environment. In order to solve this problem, we tested a Support Vector Machine (SVM) classifier with kernel functions such as Linear, Quadratic, Polynomial, Gaussian Radial Basis Function (RBF) and Multilayer Perceptron (MLP), and a Probabilistic Neural Network (PNN) in order to detect movement based on changes in the wireless signal strength.
Słowa kluczowe
Wydawca

Rocznik
Strony
9--16
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • School of Computing and Intelligent Systems, Faculty of Computing and Engineering, University of Ulster, Derry, N. Ireland, BT48 7JL, UK, Deak-G@email.ulster.ac.uk
  • Centrul de Calcul Info98 S.A., 2 Timisoara Street, 332015, Petrosani, Romania
autor
  • School of Computing and Intelligent Systems, Faculty of Computing and Engineering, University of Ulster, Derry, N. Ireland, BT48 7JL, UK
autor
  • School of Computing and Intelligent Systems, Faculty of Computing and Engineering, University of Ulster, Derry, N. Ireland, BT48 7JL, UK
autor
  • School of Computing and Intelligent Systems, Faculty of Computing and Engineering, University of Ulster, Derry, N. Ireland, BT48 7JL, UK
  • Institute of Telecommunication, University of Technology and Life Science, ul. Kaliskiego 7, 85-789
  • Institute of Telecommunication, University of Technology and Life Science, ul. Kaliskiego 7, 85-789 Bydgoszcz, Poland
Bibliografia
  • [1] L. Frazier, Surveillance through walls and other opaque materials, IEEE Aerospace and Electronic Systems Magazine, Vol. 11, No. 10, pp. 6 - 9, oct 1996
  • [2] L. Ma, Z. Zhang, X. Tan, A novel through-wall imaging method using ultra wideband pulse system, in Intelligent Information Hiding and Multimedia Signal Processing, 2006, IIH-MSP ’06. International Conference on, dec. 2006, pp. 147 - 150, 2006
  • [3] J. Wilson, N. Patwari, See-through walls: Motion tracking using variance-based radio tomography networks, Mobile Computing, IEEE Transactions on, Vol. 10, No. 5, pp. 612 - 621, may 2011
  • [4] F. Aryanfar, K. Sarabandi, Through wall imaging at microwave frequencies using space-time focusing, Antennas and Propagation Society International Symposium, 2004. IEEE, Vol. 3, pp. 3063 -3066, june 2004
  • [5] E. Gazit, Improved design of the vivaldi antenna, Microwaves, Antennas and Propagation, IEEE Proceedings H, Vol. 135, No. 2, pp. 89 - 92, apr 1988
  • [6] M. Valtonen, J. Maentausta, J. Vanhala, Tiletrack: Capacitive human tracking using floor tiles, in Pervasive Computing and Communications, 2009. PerCom 2009, IEEE International Conference on, march 2009, pp. 1 - 10, 2009
  • [7] J. Krumm, Ubiquitous Computing Fundamentals, CRC Press, 2010
  • [8] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, S. Shafer, Multi-camera multi-person tracking for easyliving, in Visual Surveillance, 2000. Proceedings, Third IEEE International Workshop on, pp. 3 - 10, 2000
  • [9] Microsoft Research, Easy Living, http://www.research.microsoft.com/ , 2011
  • [10] G. Deak, K. Curran, J. Condell, Filters for RSSIbased measurements in a Device-free Passive Localisation Scenario, International Journal on Image Processing & Communications, Vol. 15, No. l, pp. 23 - 34, 2011
  • [11] History Aware Device-free Passive (DfP) Localisation, International Journal on Image Processing & Communications, Vol. 16, No. 3 - 4, pp. 21 -30, 2012
  • [12] M. Moussa, M. Youssef, Smart cevices for smart environments: Device-free passive detection in real environments, in Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, pp. 1 - 6, 2009
  • [13] M. Youssef, M. Mah, A. Agrawala, Challenges: device-free passive localization for wireless environments, Proceedings of the 13th annual ACM international conference on Mobile computing and networking, pp. 222 - 229, 2007
  • [14] A. Kosba, A. Abdelkader, M. Youssef, Analysis of a device-free passive tracking system in typical wireless environments, in New Technologies, Mobility and Security (NTMS), 2009 3rd International Conference on, pp. 1 - 5, dec. 2009
  • [15] L.-P. Song, C. Yu, Q. H. Liu, Through-wall imaging (twi) by radar: 2-d tomographic results and analyses, Geoscience and Remote Sensing, IEEE Transactions on, Vol. 43, No. 12, pp. 2793 - 2798, dec. 2005
  • [16] Mathworks, R2012a Documentation, Bioinformatics Toolbox, http://www.mathworks.co.uk/help/toolbox/bioinfo/, 2012
  • [17] S. Sumathi, P. Surekha, Computational Intelligence Paradigms Computational Intelligence Paradigms Theory and Applications, 2010
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ac0aba44-418f-4911-becb-c14686c98b3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.