Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 3 | 411--424
Tytuł artykułu

Improved variable scale optimisation algorithm in water saving landscape design and its application

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the acceleration of urbanisation, the problem of water resource shortage is becoming increasingly serious. Currently, the water use situation in Chinese cities is severe and the contradiction between the supply and demand of water resources is prominent, which has become one of the main factors restricting sustainable development of cities. Traditional research on water-saving landscape design focuses mainly on the analysis of the efficiency of water resource utilisation within a single area or city. The scope of the research is limited and the research methods are individual, which cannot fully meet the current needs of sustainable urban water-saving landscape design. The improved variable scale optimisation algorithm has become an indispensable tool in modern landscape design and would play a more important role in landscape design and ecological environment protection in the future. In response to the shortcomings of traditional variable-scale optimisation algorithms in solving the optimisation problem of water-saving landscape design for ecological sustainable development, this article would use an improved variable-scale optimisation algorithm to study the water-saving landscape design for ecological sustainable development in Community X, City B, Province A. The research results indicated that there were three experts who rated the effect of the water saving landscape design of the first group of designers as good or above, accounting for 37.5 %. The number of people who rated the effectiveness of water-saving landscape design in the second group as good or higher was 8, representing 100 %. The improved variable-scale optimisation algorithm could effectively improve the application of water-saving landscape design in ecological sustainable development.
Wydawca

Rocznik
Strony
411--424
Opis fizyczny
Bibliogr. 27 poz. rys., wykr.
Twórcy
autor
  • College of Fine Arts and Design, Chaohu University, Hefei 238000, Anhui, China
autor
  • College of Arts and Education, Chizhou University, Chizhou 247000, Anhui, China, xk1231532023@163.com
  • Department of Public Performing Arts, Catholic University of Korea, Bucheon 14662, Gveonggi-do, Korea
autor
  • College of Fine Arts and Design, Chaohu University, Hefei 238000, Anhui, China
autor
  • College of Fine Arts and Design, Chaohu University, Hefei 238000, Anhui, China
Bibliografia
  • [1] Marin J, de Meulder B. Urban landscape design exercises in urban metabolism: reconnecting with Central Limburg’s regenerative resource landscape. J Landscape Architect. 2018;13(1):36-49. DOI: 10.1080/18626033.2018.1476031.
  • [2] Raaphorst K, Roeleveld G, Duchhart I, Van der Knaap W, Van den Brink A. Reading landscape design representations as an interplay of validity, readability and interactivity: a framework for visual content analysis. Visual Communication. 2020;19(2):163-97. DOI: 10.1177/1470357218779103.
  • [3] Xie Z. Key factors influencing landscape design in informatized urban development. Ekoloji. 2019;28(107):3535-40. Available from: https://openurl.ebsco.com/EPDB%3Agcd%3A1%3A12756865/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A136265000&crl=f.
  • [4] Ling SY, Ruitu X, Bandeira AS. On the landscape of synchronization networks: A perspective from nonconvex optimization. SIAM J Optimization. 2019;29(3):1879-907. DOI: 10.1137/18M1217644.
  • [5] Liu ZZ, Wang Y, Yang S, Tang K. An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms. IEEE Trans Cybernetics. 2018;49(4):1403-16. DOI: 10.1109/TCYB.2018.2802912.
  • [6] Teng TW, Congyi Q. Urban landscape design based on sustainable development innovation. Open House Int. 2018;43(1):68-72. DOI: 10.1108/OHI-01-2018-B0014.
  • [7] Toy S, Neslihan D. Possible ways of mitigating the effects of climate change using efficient urban planning and landscape design principles in Turkey. Fresenius Environ Bull. 2019;28(2):710-7. Available from: https://avesis.atauni.edu.tr/yayin/d11e41fb-f476-4d29-b59c-355d3fc3f927/possible-ways-of-mitigating-theeffects-of-climate-change-using-efficient-urban-planning-and-landscape-design-principles-in-turkey.
  • [8] Maki R, Tomoko N. Landscape design in Hiroshima peace memorial park: transition of the design by Kenzo Tange. Japan Architect Rev. 2020;3(2):193-204. DOI: 10.1002/2475-8876.12136.
  • [9] Bilous LSV, Shyshchenko P, Havrylenko O. GIS in landscape architecture and design. Geoinformatics. 2021;2021(1):1-7. DOI: 10.3997/2214-4609.20215521034.
  • [10] Zhao D, Balint B, Tie W. Architecture and landscape design for Beikanzi village in China: An investigation of human settlement and environment. Pollack Periodica. 2018;13(2):231-6. DOI: 10.1556/606.2018.13.2.22.
  • [11] Long NV, Cheng Y. Urban landscape design adaption to flood risk: a case study in Can Tho City, Vietnam. Environ Urbanization ASIA. 2018;9(2):138-57. DOI: 10.1177/0975425318783587.
  • [12] Wang SJ, Haibin T. An extraction method of environmental behaviour characteristics in landscape design. Int J Environ Technol Manage. 2023;26(1-2):66-80. DOI: 10.1504/IJETM.2023.127341.
  • [13] Siregar Heri SP, & Akhmad AH. Landscape design for the south labuhanbatu district government office based on eco-design. Jurnal Arsitektur. 2023;13(1):19-30. DOI: 10.36448/ja.v13i1.2366.
  • [14] Deng BJ, Kim YH, Cao LS, Heo SH. Realization method for landscape architecture design using virtual reality technology-focused on the residential garden design. Journal of the Korean Institute of Landscape Architecture. 2019;47(3):71-80. DOI: 10.9715/KILA.2019.47.3.071.
  • [15] Guneroglu N, Makbulenur B. A methodology of transformation from concept to form in landscape design. J History Culture Art Res. 2019;8(1):243-53. DOI: 10.7596/taksad.v8i1.1625.
  • [16] Zhang M, Yang C, Zhang Z, Tian W, Hui B, Zhang J, et al. Tungsten oxide polymorphs and their multifunctional applications, Adv Colloid Interface Sci. 2022;300. 102596. DOI: 10.1016/j.cis.2021.102596.
  • [17] Huang X, Rudolph DL. Coupled model for water, vapour, heat, stress and strain fields in variably saturated freezing soils. Adv Water Resources. 2021;154.103945. DOI: 10.1016/j.advwatres.2021.103945.
  • [18] Huang X, Rudolph DL. A hybrid analytical-numerical technique for solving soil temperature during the freezing process. Adv Water Resources. 2022;162.104163. DOI: 10.1016/j.advwatres.2022.104163.
  • [19] Huang X, Rudolph DL, Glass B. A coupled thermal - hydraulic - mechanical approach to modeling the impact of roadbed frost loading on water main failure. Water Resources Res. 2022;58(3):e2021WR030933. DOI: 10.1029/2021WR030933.
  • [20] Qian L, Chen Z, Huang Y, Stanford RJ. Employing categorical boosting (CatBoost) and meta-heuristic algorithms for predicting the urban gas consumption. Urban Climate. 2023;51:101647. DOI: 10.1016/j.uclim.2023.101647.
  • [21] Hong Y, Wan M, Li Z. Understanding the health information sharing behavior of social media users: An empirical study on WeChat. J Organizational End User Computing (JOEUC). 2021;33(5):180-203. DOI: 10.4018/JOEUC.20210901.oa9.
  • [22] Xiao G, Wang T, Chen X, Zhou L. Evaluation of ship pollutant emissions in the ports of Los Angeles and Long Beach. J Marine Sci Eng. 2022;10(9):1206. DOI: 10.3390/jmse10091206.
  • [23] Lou R, Lv Z, Dang S, Su T, Li X. Application of machine learning in ocean data. Multimedia Systems. 2023;29(3):1815-24. DOI: 10.1007/s00530-020-00733-x.
  • [24] He G. Enterprise e-commerce marketing system based on big data methods of maintaining social relations in the process of e-commerce environmental commodity. J Organizational End User Computing (JOEUC). 2021;33(6):1-16. DOI: 10.4018/JOEUC.20211101.oa16.
  • [25] Jiang L. Environmental benefits of green buildings with BIM technology. Ecol Chem Eng S. 2023;30(2):191-9. DOI: 10.2478/eces-2023-0019.
  • [26] Li J. The mechanism and path of finance promoting the development of low carbon economy. Ecol Chem Eng S. 2023;30(2):227-34. DOI: 10.2478/eces-2023-0023.
  • [27] Klugmann-Radziemska E. Environmental assessment of solar cell materials. Ecol Chem Eng S. 2023;30(1):23-35. DOI: 10.2478/eces-2023-0002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ac047c92-4f36-4ccb-be4b-201cb80a8d36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.