Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 50, no. 2 | 183--215
Tytuł artykułu

Results in Q-measure

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Wyniki związane z miarą Q
Języki publikacji
EN
Abstrakty
EN
This paper introduces the notion of a generalized measure for a sequence of functions with oscillation and concentration effects. This measure is constructed by averaging the sequence of Borel measurable functions using singular or regular perturbations. In this way, the generalized limits of such sequences are conceptualized by enlarging the space of functions to measure spaces. It is a modification of the Young measure. This modified measure was termed a Q-measure. It can be difficult to determine the Young measure for a broad function. The Q-measure can be easily calculated for particular functions. This is one of the advantages of this study. As an application of the measure, we can define another weaker type of Monotone convergence theorem, the Lebesgue-dominated convergent theorem. A notion of average for underlying sequences to define the Q-measure is given, as also its application in signal analysis and atmospheric sciences.
PL
W tym artykule autor wprowadza nową miarę, którą nazywa miarą Q, reprezentującą słabą∗ granicę barycentrum ciągu funkcji borelowskich. Omawia niektóre wyniki zwi¡zane z tą miarą, co jest pomocne przy wyznaczaniu miary Q dla poszczególnych typów funkcji. Ponadto omówiono zastosowanie koncepcji średniej w analizie sygnałów i naukach o atmosferze.
Wydawca

Rocznik
Strony
183--215
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • SRM Institute of Science and Technology Research School, Chennai India 603203, jishacravi@gmail.com
Bibliografia
  • [1] J. J. Alibert and G. Bouchitté. Non-uniform integrability and generalized Young measures. J. Convex Anal., 4(1):129-147, 1997.
  • [2] N. Alon and D. J. Kleitman. Partitioning a rectangle into small perimeter rectangles. Discrete mathematics, 103(2):111-119, 1992.
  • [3] N. Antonic and M. Lazar. Parabolich-measures. Journal of Functional Analysis, 265(7):1190-1239, 2013.
  • [4] K. B. Athreya and S. N. Lahiri. Measure theory and probability theory. Springer Science & Business Media, 2006.
  • [5] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, volume 6 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006.
  • [6] P. Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, second edition, 1986.
  • [7] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999.
  • [8] R. J. DiPerna. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal., 88(3):223-270, 1985.
  • [9] R. J. DiPerna and A. J. Majda. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys., 108:667-689, 1987.
  • [10] J. J. Egozcue, R. Meziat, and P. Pedregal. From a nonlinear, nonconvex variational problem to a linear, convex formulation. Appl. Math. Optim., 47(1):27-44, 2002.
  • [11] L. C. Evans. Weak convergence methods for nonlinear partial differential equations, volume 74 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990.
  • [12] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  • [13] N. J. Fine. Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. U.S.A., 41:588-591, 1955.
  • [14] U. S. Fjordholm, S. Mishra, and E. Tadmor. On the computation of measure-valued solutions. Acta Numerica, 25:567-679, 2016.
  • [15] U. S. Fjordholm, S. Lanthaler, and S. Mishra. Statistical solutions of hyperbolic conservation laws: foundations. Arch. Ration. Mech. Anal., 226(2):809-849, 2017.
  • [16] G. A. Francfort. An introduction to h-measures and their applications. In Variational problems in materials science, pages 85-110. Springer, 2006.
  • [17] I. P. Gavrilyuk. Variational analysis in Sobolev and bv spaces. Mathematics of Computation, 76(259):1695-1696, 2007.
  • [18] P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761-1794, 1991.
  • [19] H.-P. Gittel. Young measure solutions of some nonlinear mixed-type equations. Mathematical Methods in the Applied Sciences, 33(15):1882-1894, 2010.
  • [20] A. Grzybowski and P. Puchała. Remarks about discrete young measures and their Monte Carlo simulation. Journal of Applied Mathematics and Computational Mechanics, 14(2), 2015.
  • [21] A. Z. Grzybowski and P. Puchała. On general characterization of young measures associated with Borel functions. arXiv preprint arXiv:1601.00206, 2016.
  • [22] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences, 454(1971):903-995, 1998.
  • [23] C. Jisha. Q-measure-valued solution of a hyperbolic partial differential equation. Partial Differential Equations in Applied Mathematics, 100402, 2022.
  • [24] A. Leizarowitz. On the non-validity of the order reduction method for singularly perturbed control systems. Applied Mathematics and Optimization, 55(2):241-253, 2007.
  • [25] E. McShane et al. Generalized curves. Duke Mathematical Journal, 6(3):513-536, 1940.
  • [26] E. J. McShane. Relaxed controls and variational problems. SIAM J. Control, 5:438-485, 1967.
  • [27] T. J. Osler. 96.53 Partial sums of series that cannot be an integer. The Mathematical Gazette, 96(537):515-519, 2012.
  • [28] P. Pedregal. Parametrized measures and variational principles, volume 30 of Prog. Nonlinear Differ. Equ. Appl. Basel: Birkhäuser, 1997.
  • [29] S. S. Potdar, D. Nade, R. Pawar, N. J. Victor, S. Nikte, G. Chavan, A. Taori, and D. Siingh. Statistical analysis of total column ozone during three recent solar cycles over India. Journal of Atmospheric and SolarTerrestrial Physics, 181:44-54, 2018.
  • [30] P. Puchała. A method of direct computation an explicit form of young measures in some special cases. arXiv preprint arXiv:1112.2267, 2011.
  • [31] P. Puchała. An elementary method of calculating an explicit form of young measures in some special cases. Optimization, 63(9):1419-1430, 2014.
  • [32] P. Puchała. A simple characterization of homogeneous young measures and weak convergence of their densities. Optimization, 66(2):197-203, 2017.
  • [33] P. Puchała. Weak convergence of the sequences of homogeneous young measures associated with a class of oscillating functions. arXiv preprint arXiv:1807.04022, 2018.
  • [34] F. Rindler. Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms. Arch. Ration. Mech. Anal., 215(1):1-63, 2015.
  • [35] F. Rindler and G. Shaw. Liftings, young measures, and lower semicontinuity. Archive for Rational Mechanics and Analysis, 1-102, 2018.
  • [36] J. F. Rindler. Lower semicontinuity and Young measures for integral functionals with linear growth. PhD thesis, Oxford University, 2011. Supervisor: Jan Kristensen. Published in parts by Springer and De Gruyter
  • [37] T. Roubicek. Relaxation in optimization theory and variational calculus, volume 4 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1997.
  • [38] S. Sagitov. Weak convergence of probability measures, 2020. URL https://arxiv.org/abs/2007.10293.
  • [39] L. Tartar. Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pages 136-212. Pitman, Boston, Mass.-London, 1979.
  • [40] L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc.Roy. Soc. Edinburgh Sect. A, 115(3-4):193-230, 1990.
  • [41] M. Valadier. Young measures. In Methods of nonconvex analysis (Varenna, 1989), volume 1446 of Lecture Notes in Math., 152-188. Springer, Berlin, 1990.
  • [42] M. Valadier. A course on Young measures. Rend. Istit. Mat. Univ. Trieste, 26(suppl.):349-394 (1995), 1994. Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1993).
  • [43] M. Webb. Classical Young measures in the Calculus of Variations. PhD thesis, Cambridge Center for Analysis, Cambridge, UK, 2013. URL https://personalpages.manchester.ac.uk/staff/marcus.webb/pdfs/webbmasters.pdf. Doctoral training first year project.
  • [44] E. Wiedemann. Weak and measure-valued solutions of the incompressible Euler equations. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2012.
  • [45] L. C. Young. Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Varsovie, Cl. III, 30:212-234, 1937.
  • [46] L. C. Young. Necessary conditions in the calculus of variations. Acta Math., 69:229-258, 1938.
  • [47] L. C. Young. Generalized surfaces in the calculus of variations. II. Ann. Math. (2), 43:530-544, 1942.
  • [48] C. Zhang, S. Li, F. Luo, and Z. Huang. The global warming hiatus has faded away: An analysis of 2014-2016 global surface air temperatures. International Journal of Climatology, 39(12):4853-4868, 2019.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-abf5109e-55e6-419c-9951-68af1cd2ad09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.