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AbstractThis paper introduces the notion of a generalized measure for a sequence

of functions with oscillation and concentration e�ects. This measure is constructed

by averaging the sequence of Borel measurable functions using singular or regular

perturbations. In this way, the generalized limits of such sequences are conceptual-

ized by enlarging the space of functions to measure spaces. It is a modi�cation of the

Young measure. This modi�ed measure was termed a Q-measure. It can be di�cult

to determine the Young measure for a broad function. The Q-measure can be easily

calculated for particular functions. This is one of the advantages of this study. As

an application of the measure, we can de�ne another weaker type of Monotone con-

vergence theorem, the Lebesgue-dominated convergent theorem. A notion of average

for underlying sequences to de�ne the Q-measure is given, as also its application in

signal analysis and atmospheric sciences.
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1. Introduction. Sequences of bounded functions that are oscillatory
and concentrated in nature often arise in many practical problems. For ex-
ample, problems in nonconvex optimization which lead to the nonexistence
of a classical minimizer (cf.[10]). In this case, the minimizing sequence, which
minimizes the integral, oscillates rapidly. Moreover, this sequence is not point-
wise convergent but remains uniformly bounded. Moreover, even weak* con-
vergent subsequences of such a �nite sequence quickly oscillate around the
weak* limit.

To overcome this problem (cf.[45]), the generalized limits of such sequences
are conceptualized by enlarging the space of functions to the measure spaces.
The idea is to assign the limit, not as a usual function but as a probabil-
ity measure-valued function, referred to as Young measure or parameterized
measure or generalized curve[46, 47]. The Young measure is further inves-
tigated in [25, 26, 41, 42] and it is successfully used to capture oscillatory
behavior of sequences of function; however, it fails to represent some case of
concentration property of the sequence (cf.[42]). Some oscillatory sequences
with concentration property in a bounded domain are constructed in [44].
Geometrical interpretation of Young measure is introduced in [36] and later,
an elaborate study of the Young measure and the Tangent measure has been
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examined in (cf. [37]). The theoretical reports concerning the computational
studies of Young measure can be found in [30, 19, 31, 32, 33].

Tartar [40] introduces a family of measures named as H-measure (see for
more details [16, 34]). An important application of the H-measure is associated
with systems of partial di�erential equations which describe the propagation
of oscillations and concentration e�ects in the solution. A measure with strong
L2 convergence obtained by integrating the H-measure [3] with respect to the
Fourier space variable is introduced by Patrick Gérard and termed as micro-
local defect measure [18]. One of the modi�ed forms of the H-measure is
parabolic H-measure with the application includes in the transport equation
as well as Schrödinger Equation. Speci�cally, it is the tool used to compute
the weak limits of quadratic products of oscillating �elds. The H- measure
is also useful for solving the linear wave equation with smooth coe�cients
and rapidly oscillating initial data. The H-measure and Defect measure are
useful in parabolic and elliptic systems (v. [16, 18, 40, 3]). In particular, the
incapability of Defect measure to capture the direction of �ow in solution
leads to an inappropriate for hyperbolic PDE's.

Recently (cf. [14, 15] ), the entropy measure-valued solutions of hyperbolic
conservation laws are discussed by using Young Measure. The Young mea-
sure is successfully used to capture the oscillatory behavior of sequences of
function; however, it is not weakly stable and fails to represent some case of
the concentration property of the sequence (cf.[42]. Moreover, if we integrate
a given function using Monte Carlo simulation, then the relative error1 turns
out to be more in Young measure as compared to Q-measure.

The major motivation of this work is to �nd a weakly stable family of
probability measure that can capture oscillatory and concentrating behavior
of sequence of functions. Q- measure �rst introduced by Jisha in [23]. Q- mea-
sure application in PDE is discussed in this article. This innovative concept
of a new measure of a function is given by generating a sequence of functions
through singular or regular perturbation. This measure is termed as the Q-
measure which can capture highly oscillatory and concentrating nature of the
function.

In section 2, we discuss the construction of the barycenter of a sequence of
function un, n ∈ N (eq. (1)) and its application. In the section 3, gives the gen-
eralized Q-measure (see de�nition 3.1), weak convergence of Q-measure(see
de�nition 3.2), construction of a sequence from u(x) and some general form of
Q-measure for a particular type of functions are given. The oscillation, con-
centration, and blow-up of function and corresponding measure are discussed
in the subsequent section 4. The generalized Q measure is discussed in the
section 5. In section 6 we provide the example for generalized Q-measure.

2. Barycenter construction for the sequence of function

1V. appendix C
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Throughout this work, we consider the sequence of Borel measurable func-

tion (cf. [23]). Let Ai be a disjoint partition of R =
l∏

i=1

[ai, bi], l = 1, 2 (see

[2]), and (vi) is a given sequence of Borel measurable function in R and
ui ∈ L1(Ai), for all Ai. Then we can de�ne the Barycenter of the sequence of
functions indeed,

un(x) = lim
k→∞

n∑
i=1

k∑
j=1

viχAj (x)

n
. (1)

where

ui =

{
vi if x ∈ Aj

0 if x /∈ Aj
. (2)

Barycenter of sequence of functions is

u(x) = lim
n→∞

un(x), (3a)

= lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=1

uiχAj (x)

n
, (3b)

The nature of u(x) is similar to the Cesaro summability of a series given in
[13]. In other words, for a �xed x ∈ [a, b], un(x) is the convex combination
(arithmetic mean) of the �rst n partial sums of the series. For example, un =
(−1)nχ[n,n+1], n ∈ N. i.e., the characteristic functions on an interval of unit
length that escapes to in�nity. This sequence does not convergence in any
Lp(ℜ) norm, p > 1. This type of sequence of functions cannot be treated
with the Young measure and the Lebesgue measure. Also, sequence un is the
combination of oscillation and concentration in nature.

Figure 1: Sub�gures (a) and (b) represent u1(x) and u2(x), respectively.

Consider the Borel sigma algebra B(ℜ) 2, If x is a random variable and
u(x) is a Borel measurable function, then u(x) is also a random variable, but
not for a Lebesgue measurable function. In other words, the function u(x) is
a Lebesgue measurable function, x is a random variable, but u(x) is not a

2which is the smallest sigma-algebra generated by all open sets of the K ⊂ R.
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Figure 2: Denoted by
17∑
i=1

ui(x)

17
of above sequence.

random variable. The sequence of functions is considered as an independent
random variable then by the law of large number, un(x) converges to the
expectation of u as n tends to in�nity.

In equation (1), ui is multiplied with characteristic functions and posses
a lead role throughout because of its property in reducing the randomness of
a variable. The u is well-de�ned for a sequence of function but not for u. The
application of u is given in the section 6.2. The existence of Q- measure is
discussed in [23].

3. General Q-measure.

3.1. Preliminaries.

Definition 3.1 (Q-measure at a point)[28, 11, 17] A family of probabil-
ity measure {νx}x∈K is said to be Q-measure associated with a sequence of
function uj(x) at x corresponding to the sequence uj(x) such that supp(νx)
⊂ RN , where supp(νx) is the support of νx.

Q-measure is the limit of a probability distribution of the estimations of
barycenter( i.e. uj(x)) of the {uj(x)}nj=1, provided each neighboring points x
are taken randomly in K. Let Br(x) denotes the ball of radius r > 0, centered
at x and E ∈ ℜN be any measurable set, then

νx(E) = lim
r↓0

lim
j→∞

µ ({y ∈ Br(x) : uj(y) ∈ E})
µ(Br(x))

.

♣

The η′ represent u(x)−1 in �gure 3.
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Figure 3: The graphical representation of Q- measure,

Definition 3.2 [Q- measure through projection map] A positive measure
ν on K ×ℜ is called a Q- measure if for every Borel subset, B of K satis�es

ν(B ×ℜ) = µ(B), (4)

i.e. Q- measure is a measure such that the measure of every box B × ℜ is
determined by the projection of the box on to the set B in K. ♣

Definition 3.3 (Q- measure associated to u) Let u : K → ℜ be a
Borel measurable function in L2(K) and u is given by equation (1). The ν is
said to be Q- measure associated to u, if for every continuous and bounded
function β : K × ℜ → ℜ the associated Q measure νu satis�es the following
condition, ∫

K×ℜ
β(x, y)dνu(x, y) =

∫
K
β(x, u(x))dµ. (5)

♣

Definition 3.4 (Slicing a measure) Let ν be a positive measure onK×
ℜ and σ be its projection onto K (i.e., σ(B) = ν(B×ℜ)). The ν is sliced into
measures (σx)x ∈ K if it satis�es the following conditions

1. The νx is a probability measure.

2. The mapping x →
∫
ℜ β(x, y)dνx(x, y) is measurable for every continu-

ous function β and satis�es∫
K×ℜ

β(x, y)dν(x, y) =

∫
K

∫
ℜ
β(x, y)dνx(y)dσ(x).

Q- measure is also a slicing measure related to Borel measurable function
u(x). For the Q- measure νu associated to u, the measure σ in de�nition 3.3
is µ and hence∫

K×ℜ
β(x, y)dνu(x, y) =

∫
K

∫
ℜ
β(x, y)dνux (y)dµ(x).
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On the other hand,∫
K×ℜ

β(x, y)dνu(x, y) =

∫
K
β(x, u(x))dµ(x, y), (6)

=

∫
K

∫
ℜ
β(x, y)dνux (y)dµ(x),

where µu sliced to µu
x = δu(x).

♣

3.2. Weak Convergence of Q- measure.

Definition 3.5 (Weak convergence of Q-measure) Let νn, ν be Q-
measures on (K,B(ℜ)) where K ⊆ ℜ, and B(ℜ) is a Borel sigma algebra. The
νn weakly converges to ν as n → ∞ if for any bounded function u : K → ℜ,∫

K
u(x)νn(dx) →

∫
K
u(x)ν(dx), as n → ∞. (7)

♣

Remark 3.6 Let νn and ν are Q- measure, u is continuous on a compact set
K and satisfy equation (7) then νn converges to ν weakly.

3.3. Construction of the sequence un(x) from u(x) [23] To construct
Q- measure we need the sequence un(x), that we constructed from u(x). For
this, we need a sequence of function corresponds to u(x), x ∈ K ⊆ ℜN . In this
work, to construct a sequence of the function un(x), we chose two types of
perturbation, namely singular and regular perturbations, where the sequence
ϵn > 0 for all n ∈ N as follows:

Definition 3.7 Let un ∈ L2(K),K ⊂ R. The function u(x) is said to be
regularly perturbed with respect to L2(K) norm if it satis�ed for all positive
ϵn, n = 1, 2....

||u(x− ϵn)− u(x)|| → 0 as ϵn → 0 .

Otherwise it is said to be singularly perturbed.

♣

3.1.1. Construction of sequence un(x) from singularly perturbed
function u(x)
To construct a sequence of the function un(x), we choose a sequence
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ϵn > 0, n = 1, 2, ... with
∞∑
i=1

ϵi < ∞ such that for x ∈ K, c > 0,

x± ϵn + c ∈ K ⊂ R and u(x± ϵn + c) ↛ u(x)
as ϵn tends to 0.

u2m+1(x) =

{
u(x− ϵn + c) if x− ϵn + c ∈ K
u(x) if x− ϵn + c /∈ K,

(8)

u2m(x) =

{
u(x+ ϵn + c) if x+ ϵn + c ∈ K
u(x) if x+ ϵn + c /∈ K,

(9)

where m = 1, 2, 3, ..., n.

3.1.2. Construction of the sequence un(x) from regularly perturbed
function u(x)

In this case, we choose a sequence ϵn > 0 with
∞∑
i=1

ϵi < ∞ such that for

x ∈ K, x± ϵn ∈ K, de�ne the sequences un(x).

u2m+1(x) =

{
u(x− ϵn) if x− ϵn ∈ K
u(x) if x− ϵn /∈ K,

(10)

u2m(x) =

{
u(x+ ϵn) if x+ ϵn ∈ K
u(x) if x+ ϵn /∈ K,

(11)

where m = 1, 2, 3...n. For example, u(x) = sin(x).

u2m+1(x) =

{
sin(x− 1

2n ) if x− 1
2n ∈ K

sin(x) if x− 1
2n /∈ K,

(12)

u2m(x) =

{
sin(x+ 1

2n ) if x+ 1
2n ∈ K

sin(x) if x+ 1
2n /∈ K.

(13)

We applied average concept un(x) of un(x) in the Young measure concept.
We remark that if u(x) = u(x) in a bounded domain (space), Q-measure is
equal to Young measure almost everywhere. The Q-measure is possible to
�nd in the unbounded domain provided Borel measurable function lies in
L2(K),K ⊆ R.

To construct the sequences of function in equation (10) and (11) is useful
for various �elds especially calculus of variation[24], signals analysis problems
and atmospheric sciences.

3.4. Q-measure associated to a bounded piecewise di�erentiable
sequence of function. Throughout this work, we consider a Borel mea-
surable function u ∈ L2(K), u is a piecewise di�erentiable and measurable
function u : Ω → K, where Ω ⊆ ℜd and K ⊆ ℜl be a smallest connected
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Figure 4: Mid black color graph denote the average u of the sequence of func-
tion corresponding to u(x) = sin(x), x ∈ [0, 6] and ϵn = 1

2n , n = 1, 2, · · · , 1000.

compact set.
Let

M = µ ({y|y ∈ K,u : Ω → K}) ,M > 0 (14)

and dµ(x) = 1
M dx ( given in [30]), where dx is the normalized Lebesgue

measure.

The mapping β →β′ de�ned by β′(x)= β(x, .) is an isometrically iso-
morphism between Car(Ω,K;R) and L1(Ω,K) (cf.[37, 21]), where β is the
Caratheodory function3. Let i : U → L1(Ω, C(K)∗), where U be a collection
of sequence of Borel measurable function and u(x) from equation (1) (average
of the function u(x)) then,

⟨i(u), β⟩ =
∫

β(x, u(x))dµ(x) =
1

M

∫
β(x, u(x))dx.

The weak* closure of i(u) in L1(Ω, C(Ω)∗) is denoted by Y(Ω,K)

i.e., Y(Ω,K) = {η ∈ L1(Ω, C(K)∗);∃(uk) ⊂ U for uk such that i(uk)
weak∗−−−−→

η}

| ⟨i(u), β⟩ | =
∣∣∣∣∫

K
β(x, u(x))dx

∣∣∣∣ ≤ ∫
K
sup
s∈K

|β(x, s)ds| = ∥β∥L1(K,C(K)) .

The general de�nition of Q- measure is given in section 5. For practical
convenience, we are taking the following de�nition.

3if f ∈ Car(K,S) and K ∈ ℜn be a compact set, then f(., k) is measurable function for

all k ∈ S and f(x, .) is continuous function for almost all x.
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Definition 3.8 Let u : Ω → K be a bounded piecewise di�erentiable func-
tion, where Ω ⊆ ℜd and K ⊆ ℜl are connected compact sets. A family of
probability measures {νx}x∈K is said to be the Q- measure corresponding to
u, if for every continuous function β : Ω → ℜ ,∫

K
β(λ)dνx(λ) =

∫
Ω
β(u(x))dµ(x), (15)

provided u is exist and β(x1, . . . , i, . . . , xn) is integrable.

♣

Q- measure is a weak* limit of the average of sequence of Borel measurable
functions. The limit is the weak* measurable map ν : K → P(ℜN ), where
K ⊆ B(ℜN ), B(ℜN ) denotes the Borel sigma algebra in ℜN and P stands for
the probability measure.

Note 3.9 [37] For almost all x ∈ Ω, νx is absolutely continuous with respect
to the Lebesgue measure on K. According to Radon�Nikodym's Theorem,
there is a density dνx ∈ L1(K) such that νx(ds) = dνx(s)ds.

Definition 3.10 The atomic measure is de�ned by νx = ν for any x ∈ Ω
i.e, the family (νx)x∈Ω is a linear combination of Dirac delta δu(x), where u(x)

is a measurable function in (K,B(ℜN ), ν).

♣

The atomic measure is an important concept which is useful in barycenter
concept and applied to various partial di�erential equations.

Next, we discuss the similar results as proved for Young measure in [30].

Proposition 3.11 Let u(x) : [a, b] → [c, d] be a strictly monotonic and dif-
ferentiable function where a, b, c, d ∈ R. Q- measure is absolutely continuous
with respect to the Lebesgue measure on K. Then density of Q- measure as-
sociated with the function u(x) is |u′(x)−1|.

For details, see appendix B.

Proposition 3.12 Let u(x) : [a, b] → [c, d], u(x) =
n∑

j=1

ui(x)χAj be a con-

tinuous function and corresponding average function u(x) be a strictly mono-
tonic di�erentiable function on K ,where K = [c, d] ⊆ R and Aj be a disjoint
partition of [a, b]. Then Q-measure associated to the function u(x), u(x) is ab-
solutely continuous corresponding to the Lebesgue measure on K. The density

g(x) is equal to
n∑

i=1

|u′i(x)
−1|.
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The proof is given in appendix B.

Now, we consider the sequence of function ui as a piecewise constant
function.

Theorem 3.13 (v. [20])

i. Let (K,F , µ) be a measurable space and let A1, A2, · · · , An be disjoint el-
ements of F , ∪n

i=1Ai = A and let a1, · · · an are real numbers. Let u(x)
be a simple measurable function i.e.,

u(x) =
n∑

i=1

aiχAi ,

then the Q- measure, νx = 1
M

∑n
i=1miδai , and

n∑
i=1

mi = 1 where M,mi

is the Lebesgue measure of the interval I and Ii respectively.

ii. Let (K,F , µ) be a measurable space and A1, A2, · · · , An be disjoint ele-
ments of F and let a1, · · · an. are real numbers. Let u(x) be a function
of the form

u(x) =
n∑

i=1

(aix+ bi)χAi ,

then, the Q- measure ν =
1

M

n∑
i=1

∣∣∣∣ 1ai
∣∣∣∣χwi(Ii), where wi(x) = (aix + bi)

is the density function.

iii. Let (K,F , µ) be a measurable space with A1, A2, · · · , An be disjoint inter-
vals in F . Moreover u1, · · · , un be a functions in Ai. If u be the function

of form u =

n∑
i=1

uiχAi , then the Q measure

νx =

n∑
i=1

1

mi
|J(ui)−1 |, where

1

mi
= 1,

and u is the Jacobin matrix.

Proof We construct a sequence of function u(x) from u(x) by equation (10)
and (11)

i: By construction

u(x) = lim
m→∞

lim
k→∞

2m∑
l=1

n∑
i=1

k∑
j=1

ai
2m

χkj∩Al
= lim

k→∞

n∑
i=1

k∑
j=1

aiχkj∩Ai
,
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where kj be a disjoint interval,

∫
K
β(λ)dνx(λ) =

∫
[b,c]

β(u(x))dµ(x), (16)

= lim
k→∞

1

M

n∑
i=1

k∑
j=1

∫
β(ai)χkj∩Ai

dx,

= lim
k→∞

1

M

k∑
j=1

1

mi

∫
K
β(y)dδai .

While comparing both side, νx =
1

M

n∑
i=1

miδai and
n∑

i=1

mi = 1.

Where M,mi be the Lebesgue measure on the interval I and Ii, respec-
tively.

ii: As constructed earlier,

u(x) = lim
m→∞

lim
k→∞

2m∑
l=1

n∑
i=1

k∑
j=1

al(x− ϵl) + b− (al(x+ ϵl) + b)

2m
χkjl∩Al

,

ki, i = 1, 2, ..., k be a disjoint in�nitesimal partition of Al

u(x) = lim
m→∞

lim
k→∞

2m∑
l=1

n∑
i=1

k∑
j=1

(alx+ b)χkjl∩Al
.

∫
K
β(λ)dνx(λ) =

∫
[b,c]

β(u(x))dµ(x),

=
1

M

m∑
l=1

n∑
i=1

k∑
j=1

∫
β(aix+ b)χkjl∩Al

dx,

ν =
1

M

n∑
i=1

∣∣∣∣ 1ai
∣∣∣∣χwi(Ii), where wi(x) = (aix+bi) is the density function.

iii. From induction principle, from previous result we consider νx hold for
i=1. For i = (n+ 1).

νx =

n+1∑
i=1

1

mi
|J(ui)−1 |,
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∫
K
β(λ)dνx(λ) =

∫
K
β(u(x)dµ(x) =

∫
K

1

M

n+1∑
i=1

β(y)|J(ui)−1 |,

dνx(λ) =
1

M
|

n∑
i=1

J(ui)−1 |dy,

νx =
1

M

n∑
i=1

1

mi
|J(ui)−1 |, νx =

n∑
i=1

1

mi
|J(ui)−1 |.

Theorem 3.14 Let u be a continuously di�erentiable function such that u(x)−1

exist. Then, Q- measure associated with u(x) is a measure that is absolutely
continuous with respect to the Lebesgue measure on K. It's density equals to
1
M |J(u)−1 |.

Proof We construct a sequence of function u(x) from u(x) by equation (10)
and (11), and get∫

K
β(λ)dνx(λ) =

∫
K
β(u(x)dµ(x) =

∫
K

1

M
β(y)|J(u)−1 |,

By comparison, we get

dνx(K) =
1

M
|J(u)−1 |dy,

νx =
1

M
|J(u)−1 |.

Remark 3.15 If the domain is compact and the function u(x) is continuous
and measurable with respect to Borel sigma algebra, then Q- measure is equal
to Young measure for the regularly perturb function u(x).

The proof can be followed using the similar arguments as given in [30, 31].

4. Concentration and Oscillation concept in Q- measure. The
concentration and rapid oscillation property of function in�uenced the con-
vergence of a function. So it play an important role in variational problem.

4.1. Concentration. Theorem 1 and theorem 2 in [9] tell us that any
conceivable oscillation or concentration behaviour of function can be real-
ized by a sequence of weak solutions of partial di�erential equation. We have
demonstrated via an example that if un in (1) exists for large n ∈ N then, one
can de�ne Q- measure for the concentration of sequence in the unbounded
domain. In our construction, we consider u corresponding to given Borel mea-
surable function u. It is the average of functions in a di�erent sense as used
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in equation (1). Such understood average is useful in a signal processing for
reducing low frequency noise. According to this average sense, the intensity
of concentration nature of function is reduced whenever the sequence has less
oscillation, concentration, and no more singularities. In this case β(un) does
not converge strongly to β(u) but we obtained better convergence compare
to the weak convergences if the sequence of function {un} weakly converges
to u.

Figure 5: Wave formation via combination of functions

Figure 6: Signal formation via combination of functions

Corollary 4.1 Let u(x) = a, ∀x ∈ [b, c], where a, b and c are constants
then corresponding Q-measure is δa.

Proof Let kn = [bn, cn], where b1 = b, c1 = c, n = 1, 2, ..., k be a disjoint
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in�nitesimal partition of [b, c], then

u(x) = lim
n→∞

n∑
i=1

k∑
j=1

a

n
χkj = a

k∑
j=1

χkj ,

∫
K
β(λ)dνx(λ) =

∫
[b,c]

β(u(x))dµ(x) =
k∑

j=1

∫
β(a)χkjdµ(x),

=

∫
K
β(y)dδa,

Whereas, dν = δady ⇒ ν = δa. ■

4.2. Oscillation Let uj be a real-valued function of a real variable. The
oscillations of uj on an interval I in its domain is the contrast between the
supremum and in�mum of uj . The sequence of rapidly oscillating functions
provide an example of weakly but not strongly converging sequences.

In the case of variational problem, we are unable to �nd a solution because
of it's rapidly oscillatory property. However, Young measure and Q-measure
can capture such oscillations. It is well known that, every periodic signal a sum
of a sinusoids of various frequencies. From the Figure 6, in the accompanying
hypothesis we can �nd corresponding Q-measure. Herein, �rst three signal in
Figure 5 are the decomposition of red shading signals. This decomposition is
useful in signal analysis problem.

We can utilize following hypothesis in AM signal decoding.

Theorem 4.2 Let un ∈ K be a strictly bounded and di�erentiable function
given by un(x) = du(cnx) + b, for all x ∈ A = [a, b] where d, b are constants
greater than zero and cn is an increasing sequence in ℜ. Let un(x) = u(cnx)
and u(x) = u(cnx), for all n. Then, the density of un is 1

dM (u−1(y−b
d ))′.

Proof Let un be a given function. Choose [a′i, b
′
i] = Ai, i = 1, 2, ..., n be a

disjoint partition of [a, b] ,

lim
n→∞

un(x) = u(x) = lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=i

uiχAj (x)

n
,

= lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=i

du(cnx) + b

n
χAj (x),

= lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=i

du(x) + b

n
χAj (x),

= lim
k→∞

k∑
j=i

(du(x) + b)χAj (x).
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Then, from equation (1) we have∫
K
β(λ)dνx(λ) =

∫ b

a
β(un(x))dµ(x),

= lim
k→∞

k∑
j=i

∫
kj

β(du(x) + b)dµ(x),

= lim
k→∞

1

Md

∫
K
β(y)(u−1(

y − b

d
))′dx,

νx is absolutely continuous with respect to the Lebesgue measure on [a, b] ,
by

Radon-Nikodym theorem there is a density f(x) =
1

Md
(u−1(

y − b

d
))′. ■

Corollary 4.3 Let un(x) be a sequence of bounded and di�erentiable func-
tions in the form of un(x) = du(cnx) + b on (A,B(A), µ) where A = [a, b]
and satisfy above mentioned theorem. Then the Q- measure νn associated to
un converges to ν and ν is a constant for any Borel function u on A.

Corollary 4.4 Let u : [0, 1] → [0, 1] be a periodic function with period T
and the sequence

un(x) = u(nx), n ∈ N,

clearly un(x) will be a sequence of periodic function with period T
n . Then

corresponding Q- measure is 1
M (u−1)′.

Proof Let us choose d = 1, b = 0 in theorem B.1(see appendix). The proof
can be followed in a similar way as done in [39]. ■

Let us recall some remarks from the theory of Young measure.

Remark 4.5 Let (uj) ∈ L1(K;ℜN ) with ν is Q measure generated by cor-
responding (uj);

� Given (uj) is equintegrable, then ν is not homogeneous atomic measure
or it has no concentration part (ν is not a combination of δx ).

� Given that (uj) converges locally in measure to u ∈ L1(K;ℜN ) if and
only if ν = δu(x).

� Let (uj) with ν is a Q- measure generated by corresponding (uj) then

the (uj)converges globally in measure to u ∈ L1(K;ℜN ) i� ν =
∑
i

aiδbi ,

where
∑
i

ai = 1 and bi is the value of u.
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� Strong convergence of sequence is equivalent to the absence of oscilla-
tion, concentration and blow up.

� By Vittali convergence theorem in[36], limit of nonlinear expression of
non-oscillating (point wise or convergence in measure ), non-concentrating
(equi-integrable ) and non-blowup (converging in norm ) sequence con-
verge to corresponding nonlinear expression of limit of sequence.

5. Generalized Q-measure The general limiting behavior of a weakly
convergent sequences with oscillation and concentration e�ects has been de-
noted by the notion of a generalized Young measure ([1, 8, 9, 14]). Similarly,
we need a notation of general limiting behavior of a weakly convergent se-
quence having oscillation and concentration e�ects that can be denoted by
the notion of a generalized Q- measure in the space of M(ℜd)

Let us consider u(x) ∈ BV (K,Rm), then corresponding average u(x) ∈
BV (K;Rm). We write the K as a disjoint union;

K = Du ∪ Ju ∪ Cu ∪Nu,

where Du denotes the set of points at which u is approximately di�erentiable,
Ju denotes the set of jump points of u, Cu denotes the set of points where u
is approximately continuous but not approximately di�erentiable, and Nu is
the collection of normal of u.

By Radon Nikodym Decomposition theorem, �nite Q- measure can be
decomposed to

Dν = Daν +Dsν,

Daν is a absolute continuous part and Dsu is a singular part of derivative

Dau(x) =

∫ x

−∞
p(y)dy,

p(y) is density function.
Dsν = Djν +Dcν,

Djν is the jump part( blow up) and Dcν is the cantor part or pure part.

Djν =
∑
x∈Ju

(u+(x)− u−(x))δx,

where ju be the jump set4 , it is an N − 1 recti�able hyper surface(H). Also,
u+ and u− are positive and negative part of the function u.

Du(x) = Dau(x) +
∑
x∈Ju

(u+(x)− u−(x))δx + C(u),

4jump part also denotes pure part of measure
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C(u) is the cantor part or discrete part such that

C(u(x)) =
∑
xi<x

p(xi), p(xi) ≥ 0,
∑
i

p(xi) ≤ 1,

Ũ is the extension of the integral of the function u(x).
We extends the classical theory to the framework of functions of bounded

variation. A generalized gradient Q- measure ν is de�ned as a the triplet of
measures ν = (νab, νb, νc) where νb is a positive bounded Radon measure on
K. Also, νab is a absolute continuous part, this measure part corresponds to
oscillation part of the function and νc cantor part of ν
Let ν ∈ RN a family of probability measures on ℜN and ν∞ is a family of
probability measures on Sn−1, the unit sphere of RN . The integral notation
representation of generalized Q- measure is given as:

Ũ [u] =

∫
K

∫
ℜn

u(x, y)dν(y)dx+

∫
K

∫
Sn−1

u∞(x, y)dν∞(y)dx,

where u∞ is the recession function according to the decomposition �ip Rindler(
for details, see [35]).

6. Important examples of generalized Q- measure. Given a se-
quence of functions un which converges pointwise to some limit function u, it
is not always true that

lim
n→∞

∫
undx =

∫
lim
n→∞

undx.

The Monotone Convergence Theorem (MCT), Dominated Convergence Theo-
rem (DCT), and Fatou's Lemma are the three noteworthy results were coined
in the theory of Lebesgue integration tells about the interchangeability of inte-
gral and limit. The DCT and MCT tell us that with the certain restriction on
un and u, integral can be interchanged. As an application of the Q-measure,
we can de�ne an another weaker type of Monotone convergence theorem and
Lebesgue dominated convergent theorem.

lim
n→∞

∫
undνn =

∫
lim
n→∞

undν.

Consider the following examples which are the explanation behind the
origin of Monotone convergent theorem and Dominated convergent theorem
with respect to Lebesgue measure. In this way, we consider the following
examples in the sense of Q- measure associated to a bounded function.

Example 6.1 Let un = (−1)nχ[n,n+1], n ∈ N i.e. the characteristic functions
on an interval of unit length which escapes to in�nity. This sequence does
not convergent with any Lp(ℜ) norm, p > 1. This type of convergence can
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not be treated with Young measure and Lebesgue measure. Also, un is the
combination of oscillation and concentration. Refer �gure 2. From equation
(1), using the regular perturbation theory,

un(x) = lim
k→∞

n∑
i=1

k∑
j=i

ui(x)χAj∩Bi(x)

n
.

Using the Q- measure concept in a �nite domain, we get∫
K
β(λ)dνx(λ) =

∫
K
β(un(x)) dx.∫

K
β(λ)dνx(λ) = lim

k→∞

n∑
i=1

k∑
j=i

∫
Aj∩Bi

β(
−1n

n
) dx,

from above equation∫
K
β(λ)dνx(λ) =

n

2

∫ n

0
β(y)dδ 1

n
+

n

2

∫ n

0
β(y)dδ−1

n
,

νn =
n

2
δ 1

n
+

n

2
δ−1

n
,

u(x) = lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=i

uiχAj

n
,

u(x) = lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=i

(−1)iχAj∩Bi

n
, where Bi = [i, i+ 1].

Here we can not use above mentioned results because of the unbounded nature
of interval limit n → ∞. Here we use direct de�nition of weak convergence
and get δ0( refer about the convergence in [43] ) which is the Q- measure
corresponding to u. It is the generalized Q- measure which has concentra-
tion part δ0 and oscillation part δ−1

n
and δ 1

n
. Now, we consider the following

integral, limn→∞
∫
undνn and

∫
limn→∞ undν

lim
n→∞

∫
undνn = lim

n→∞

∫
un(x)d(

n

2
δ 1

n
+

n

2
δ−1

n
(x))

= lim
n→∞

n

2
un(

1

n
) +

n

2
un(

−1

n
) = 0.

(17)

∫
lim
n→∞

undν =

∫
lim
n→∞

undδ0(x) = 0.

Example 6.2 Let un = 1
nχ[0,n] this sequence converge strongly in Lp, p > 1

this is a sequence escape width to in�nity.
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Figure 7: δ0

Let us choose Aj = [ j2 ,
j+1
2 ), j = 0, 1..., ..2n be a partition of [0, n]. From

equation (1)

un(x) =

n∑
i=1

2n∑
j=1

ui(x)

n
χAj (x) ≈

n∑
i=1

2n∑
j=1

1

n

(
ln(n) +

1

2
+

1

2n

)
χAj (x),

since
n∑

i=1

1

n
≈ ln(n) +

1

2
+

1

2n
.

corresponding Q- measure of un(x) is nδ ln(n)
n

+ 1
2n

+ 1
2n2

.

u(x) = lim
n→∞

un(x) = lim
n→∞

n∑
i=1

2n∑
j=1

ui(x)

n
χAj (x),

u(x) =



limn→∞
1
n

∑n
i=1

1
i ifx ∈ [0, 1] ∩A1

limn→∞
1
n

∑n
i=1

1
i ifx ∈ [0, 1] ∩A2

limn→∞
1
n

∑n
i=2

1
i ifx ∈ [0, 2] ∩A3

limn→∞
1
n

∑n
i=2

1
i ifx ∈ [0, 2]∩A4

...
limn→∞

1
n2 ifx ∈ [0, n] ∩A2n−1

limn→∞
1
n2 ifx ∈ [0, n] ∩A2n.

u(x) = 0, ∀x ∈ [0, n].
From [27], we observe that harmonic partial sum can not be an integer, and∫

K
β(λ)dνx(λ) =

∫
K
β(0)dy =

∫
K
β(y)d(δ0),

then

dν = dδ0, or ν = δ0.
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Example 6.3 Let un = 1√
n
χ[−1

n
, 1
n
]. Choose An = [−1

n , −1
n+1)∪ ( 1

n+1 ,
1
n ]. From

equation (1) we have

u(x) = lim
n→∞

1

n

n∑
i=1

ui(x)

=



limn→∞
1
n(1) if x ∈ [−1, −1

2 ] ∪ [12 , 1]
limn→∞

1
n(1 +

1√
2
) if x ∈ [−1

2 , −1
3 ] ∪ [13 ,

1
2 ]

limn→∞
1
n(1 +

1√
2
+ 1√

3
) if x ∈ [−1

3 , −1
4 ] ∪ [14 ,

1
3 ]

limn→∞
1
n(1 +

1√
2
+ 1√

3
+ 1√

4
) if x ∈ [−1

4 , −1
5 ] ∪ [15 ,

−1
4 ]

...
limn→∞

1
n(
∑n

i=1
1√
i
) = 0 if x ∈ [−1

n , −1
n+1 ] ∪ [ 1

n+1 ,
1
n ]

...

Q- measure corresponding to un is
n∑

i=1

2

n
δai
n

and corresponding to u is δ0. We

evaluate the following integral and get,∫
lim
n→∞

undν =

∫
lim
n→∞

undδ0(x) = 0

lim
n→∞

∫
undνn =

∫
lim
n→∞

undν

∫
udν = 0.

Example 6.4 (Typewriter sequence), Let un = χ
[n−2k

2k
,n−2k−1

2k
]
, k ≥ 0 and

2k ≤ n < 2k+1. This is a sequence of indicator functions of intervals of
decreasing length, walking over the unit interval [0, 1] again and again. The
typewriter sequence is an suitable example of a sequence which converges
to zero in measure but does not converge to zero a.e. on comparing, we get
ν = δ0.

Example 6.5 Let u0(x), u1(x), u2(x) be given as on Figure 8.

un(x) =

{
a x ∈ [ 2k

n , 2k+1
n ], k ∈ Z

b else where

The straight forward calculation leads to, ν = δ0 which is the corresponding
Q- measure (v. Figure 8).

Weak stability of Q- measure is discussed in [23].

6.1. Application of un in atmospheric science Monthly temper-
ature: The atmospheric boundary layer (ABL)[cf. [48]] is the lowest portion
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Figure 8: The pictures present functions u0(x), u1(x), u2(x) and u(x), where
a = 1, b = 3, k = 4, n = 3
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Figure 9: The time series of monthly mean temperature from an attitude
100m˘3000m during Apr 2006 � Dec 2014 and linear temperature trend for av-
erage temperature (solid black line) over Chennai is observed from radiosonde.

of the earth's atmosphere and it plays an important role in the exchange of
the pollutants, heat �ux, moisture from surface to free atmosphere through
the turbulence. Recent studies shows that the warming trends observed in the
lower portion of the atmosphere are due to surface pollutants and greenhouse
gasses. For typical example, the linear temperature trend of ABL is calculated
over Chennai from 2006 to 2014 is shown in Figure 9. The ABL considered
as from the surface up to 3 km and the monthly mean temperature from an
attitude of 100 m up to 3000 m is averaged using un. The linear trend has
been depicted in Figure 9. It has been observed that over a period of nine-
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year, 0.15% of increasing trend (cf.[29]) in temperature is obtained.

6.2. Application of u based on u.

6.2.1. Denoising of signal: The construction of u is useful in Empirical
Mode Decomposition (EMD). The following pictures 10-12 are an example of
the wave, in which noises can be removed using un. The noisy residue signal
is composed of components with several frequencies. From this composed of
components, we consider a sequence of functions un and de�ne un. Then, we
use the average function of un to reduce high and low level frequency wises.
More detailed study can be found in [22].

Figure 10: Decomposed noisy signal
y = sin(10πx), number of points
N = 1000

Figure 11: Noise reduction using u

Figure 12: Original signal

7. Conclusion. A notion of average for underlying sequences to de�ne
the Q-measure is given and also applied in and atmospheric sciences also
discussed. Above discussed results related to the Q- measure is helpful to
computing the Q- measure easily for particular types of functions.

Supplementary Materials: All data used in our experiments have been produced with
MATLAB random number generators and no external datasets have been used. The datasets
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generated and analysed during the current study are available from the corresponding au-
thor on reasonable request.

Con�icts of Interest: The authors declare that they have no con�ct of interest.

Appendices

A. Basic concepts
Let µ be a Borel measure [6] on the RN be the sigma �eld generated by
rectangles then

µ[x : ai ≤ xi ≤ bi, i− 1, 2, · · ·n] =
n∏

i=1

(bi − ai).

This measure denotes ordinary volume eg. it is a length (k = 1), area (k = 2),
volume (k = 3), or hyper volume (k ≥ 4).

We recall the following de�nitions as discussed in [4, 43, 14].

Definition A.1 A probability measure on the sample spaceK is a function,
denoted P, from subsets of K to the real numbers R, such that the following
hold

i. P(A) lies between 0 and 1 for every A ∈ F .

ii. P(ϕ) = 0 & P(K) = 1.

iii. P Satis�es countable additivity.

♣

Definition A.2 (Dirac measure δx) Let (K,F , µ) be a space

δx(A) =

{
1 if x ∈ A
0 if x ∈ K\A

In particular, δx(g) = g(x) for g ∈ C0(K). We recall the following de�ni-
tions as discussed in [4, 43, 14].

♣

Definition A.3 Let un(x) be a sequence of measurable functions from X
to ℜ, on a measure space (X,F , ν). The sequence un(x)is said to converge in
measure to u(x) locally if for every η > 0, for every E ∈ F with ν(F) < ∞

lim
n→∞

ν({x ∈ E : |un(x)− u(x)| > η}) = 0. (18)

♣
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Definition A.4 Let un(x) be a sequence of measurable functions from X
to ℜ, on a measure space (X,F , ν). The sequence un(x) is said to converge
in measure to u(x) globally if for every η > 0,

lim
n→∞

ν({x ∈ X : |un(x)− u(x)| > η}) = 0. (19)

♣

Remark A.5 (Oscillation) Sequence {uj}j∈N ∈ Lp(K,ℜN ) converge in
measure to u written ujm−→u, it fail, then the sequence oscillates.

Definition A.6 (Uniformly integrable ) If sequence {uj}j∈N is uni-
formly integrable then

lim
M→∞

sup
j

∫
{|uj |≥M}

|uj(x)|dx = 0.

♣

Remark A.7 (Concentrates) If sequence {uj}j∈N ∈ Lp(K,ℜN ) is not
uniformly integrable, then sequence is said to be concentrates.

Definition A.8 (Regularity) A measure µ is outer regular on a Borel-
measurable set E if

µ(E) = inf{µ(U) : U ⊃ E, for every open set U},

and µ is called inner regular on Borel-measurable set E if

µ(E) = sup{µ(K) : K ⊂ E, where K is a compact set }.

The measure µ is called regular if it is both inner and outer regular on all
Borel sets.

♣

Definition A.9 (Radon measure) A Radon measure is a �nite Borel
measure that is outer regular on all Borel sets and inner regular on open
sets.

♣
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Theorem A.10 Let (X,B(X), µ) be a measure space where X ∈ ℜN and µ
is a Lebesgue measure. Also, β(x) is a continuous function in ℜN , we de�ne

ν(A) =

∫
A
β(x)dµ, A ∈ B(X),

then ν is a measure.

Proof We prove only additivity all other conditions are trivial. Let An ∈
B(X) be disjoint collection of sets, then

ν(∪nAn) =

∫
∪nAn

β(x)dµ =

∫
χ∪nAnβ(x)dµ =

n∑
i=1

∫
χAnβ(x)dµ,

=
n∑

i=1

∫
An

β(x)dµ =
n∑

i=1

ν(An).

Remark A.11 Let uk(x), x ∈ E ⊆ R be a sequence of continuous function,
µ(E) < ∞ and each continuous function uk(x) is bounded by M then both
average concept u∗k(x) and uk(x) have a bounded di�erence, with u∗k(x) =

1
µ(E)

∫
E uk(x)dµ, µ(E)be a lebesgue measure of E and

u(x) = lim
n→∞

un(x) = lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=1

uiχAj (x)

n

as previously de�ned.
It is worth mentioning that u(x) is advantageous over u∗k(x); as it can be
de�ned for both the continuous and discrete function. Also, µ(E) can take
the values as zero. On the other hand, in u∗k(x), we can only use uk as a
sequence of continuous functions and µ(E) ̸= 0

Definition A.12 A Young measure from D ∈ ℜk to ℜN is a function which
maps z ∈ D to a probability measure on ℜN . Young measure is a weak*-
measurable map ν ′ : D → B(ℜN ). ♣

Therefore, the mapping z →
〈
ν ′z, g

〉
is Borel measurable for every g ∈

C0(ℜN ), where C0(ℜN ) is the set of all Young measures. It is denoted by
Y(K,ℜN ).

B. Proves.

B.1. Selected proves of the propositions from Sec. 3.4. Due to
the importance of the claims cited, in Section 3.4 we also include proofs of
the most important ones.
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Proof (Proposition 3.11) Construct a sequence of function u(x) from
u(x) by equation (10) and (11)

u(x) = lim
n→∞

lim
k→∞

2n∑
i=1

k∑
j=1

ui(x)

2n
χkj ,

where kj be a disjoint interval. Substitute u in equation (15).∫
K
β(ξ)dνx(ξ) =

∫
[b,c]

β(u(x))dµ(x) =
1

M

∫
[b,c]

β(u(x))dx,

=
1

M

∫
K
β(y)|u′(x)−1|dy,

On comparing, we get

dν =
1

M
|u′(x)−1|dy,

where M takes from the equation as in (14). ■

Proof (Proposition 3.12) Construct a sequence of function u(x) from
u(x) by equation (10) and (11)

u(x) = lim
n→∞

lim
m→∞

2n∑
i=1

m∑
j=1

n1∑
k=1

ui(x)

n
χkj∩Ak

.

where kj be a disjoint interval. We prove it by induction on k.
For i = 1 it is true by proposition 3.11. Suppose it is true for k = l we get

gl(x) =
l∑

i=1

|u′i(x)
−1|. For k = l + 1 ,

We consider gl+1(x) =

l+1∑
i = 1

|u′i(x)
−1|

∫
K
β(ξ)dνx(ξ) =

l+1∑
i=1

∫
Ak

β(ui(x))dµ(x),

=
l∑

i=1

∫
Ak

β(ui(x))dµ(x) +

∫
Al+1

β(ui(x))dµ(x),

Using induction principle,∫
K
β(ξ)dνx(ξ) =

1

M

l∑
i=1

∫
Ak

β(y)|u′i(x)
−1|χkidx+

1

M

∫
β(ul+1)χkl+1

dx

=
1

M

l+1∑
i=1

∫
Ai

β(y)|u′i(x)
−1|dy =

1

M

l+1∑
i=1

∫
k
β(y)|u′i(x)

−1|dy,
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On comparing, we get

dν =
1

M

l+1∑
i=1

|u′(x)−1|dy,

which shows that it is true for k = 1, 2, ..., n. ■

Theorem B.1 Evans (2010) Let 1 ≤ p ≤ ∞ and u ∈ Lp(U) be a T periodic
function un(x) = u(nx) 1 ≤ p < ∞ as n → ∞ then,

un ⇀
1

|T |

∫ T

0
u(y)dy, n = 1, 2, · · ·

and if p = ∞ as n → ∞

un ⇀∗ 1

|T |

∫ T

0
u(y)dy, n = 1, 2, · · ·

C. Convergence of Q- measure in Weak* topology.

Definition C.1 (Measures convergence) A sequence ofQmeasure νn ∈
(K,F ,B(M)) of RN -valued measures converges weakly* to a measure ν ∈
(K,F ,B(M)) if and only if∫

K
g(x)dνn(x) =

∫
K
g(x)dν(x), ∀g ∈ C0(K,ℜN ).

If the convergence of measure is strong then corresponding sequence of func-
tion un(x) strongly converges to u(x), where K is a compact subset of ℜN .

♣

We recall convergence of probability measure as de�ned in Billingsley ( 1999),
Sagitov (2020).

Definition C.2 (Probability distribution) LetX,Xn be a random el-
ement de�ned on the probability space (K,B(ℜ), P ). Then a probability mea-
sure P on K ⊂ ℜ is the probability distribution of X, if P (A) = P (X ∈ A)
for all A ⊂ K, where K ⊂ ℜ

♣
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Definition C.3 Let Xn, X are random elements de�ned on the probability
spaces (Kn,Fn, Pn), (K,F , P ). We say Xn converge in distribution to X as
n → ∞ if for any bounded continuous function u : K → R,

En(u(Xn)) → E(u(X)), as n → ∞.

This is equivalent to the weak convergence Pn ⇒ P of the respective proba-
bility distributions, where ′ ⇒′ denotes the convergence in distribution.

♣
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Streszczenie W tym artykule autor wprowadza now¡ miar¦, któr¡ nazywan¡ miar¡

Q, reprezentuj¡c¡ sªab¡∗ granic¦ barycentrum ci¡gu funkcji borelowskich. Omawia

niektóre wyniki zwi¡zane z t¡ miar¡, co jest pomocne przy wyznaczaniu miary Q dla

poszczególnych typów funkcji. Ponadto omówiono zastosowanie koncepcji ±redniej w

analizie sygnaªów i naukach o atmosferze.
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