Warianty tytułu
Języki publikacji
Abstrakty
Video surveillance systems are well established tools for monitoring important areas and detecting abnormal situations. In places such as one way road or tunnel, airport arrival gate, subway entry gate etc. it is important to monitor the direction of movement and to detect those which are prohibited. If the event is detected in the same time when the situation happens, a fast reaction can fix the problem (turning on the red light to prevent cars from entering the tunnel, sending security force to stop and search the suspect etc.). In the article a working system which is able to detect movement in prohibited direction is presented. The algorithm proved a very good detection rate for tested movie sequences. By optimizing various aspects of the algorithm a real-time efficiency (30fps) for 640×480 resolution frames is achieved.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
251--264
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, komorkie@agh.edu.pl
Bibliografia
- [1] B. Benfold, I. Reid, Stable multi-target tracking in real-time surveillance video, IEEE Conference on Computer Vision and Pattern Recognition, pp.3457-3464, 20-25 June 2011
- [2] K. Bernardin, R. Stiefelhagen, Evaluating multiple object tracking performance: the CLEARMOT metrics, Journal Image Video Processing, , Hindawi Publishing Corp., New York, NY, United States, pp. 1-10, February 2008 [
- [3] G. Bradski, V. Pisarevsky, Intel’s computer vision library: applications in calibration, stereo segmentation, tracking, gesture, face and object recognition, Proceedings. IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 796 -797, 2000
- [4] G.J. Brostow, R. Cipolla, Unsupervised Bayesian Detection of Independent Motion in Crowds, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.1, pp. 594- 601, June 2006
- [5] Z. Bubliński, W. Chmiel, M. Jabłoński, P. Kadłuczka, T. Kryjak, Z. Mikrut, P. Pawlik, R. Tadeusiewicz, System inteligentnego monitoringu przestrzeni i obiektów szczególnego znaczenia SIMPOZ, Pomiary Automatyka Robotyka, Vol. 12, 2011
- [6] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, A System for Video Surveillance and Monitoring, tech. report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May, 2000
- [7] C. Harris, M. Stephens, A combined corner and edge detection, In Proceedings of The Fourth Alvey Vision Conference, pages 147-151, 1988
- [8] B.K.P. Horn, B.G. Schunck, Determining optical flow, Artificial Intelligence, Vol 17, pp 185-203, 1981
- [9] V. Rabaud, S. Belongie, Counting Crowded Moving Objects, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.1, pp. 705- 711, June 2006
- [10] E. Rosten, T. Drummond, Fusing Points and Lines for High Performance Tracking, ICCV, 2005
- [11] E. Rosten, T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006
- [12] J. Shi, C. Tomasi, Good features to track Computer Vision and Pattern Recognition, Proceedings CVPR ’94, IEEE Computer Society Conference on, pp.593-600, Jun 1994
- [13] R. Tadeusiewicz, Place and Role of Intelligent Systems in Computer Science, Computer Methods in Materials Science, Vol. 10, No. 4, pp. 193-206, 2010
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-abd4a7ca-2e31-4b03-ad81-c04765d45d56