Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 4 | 367--381
Tytuł artykułu

Influence of chemically treated carbon fibers on the electromagnetic shielding of ultra-high-performance fiber-reinforced concrete

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of carbon fiber and its surface treatment through chemical solutions on the mechanical properties and electromagnetic (EM) shielding of ultra-high-performance fiber-reinforced concrete (UHPFRC) were analyzed. Three types of carbon fibers chemically treated with sodium hydroxide, nitric acid, and ammonia solutions were evaluated, along with a plain carbon fiber control sample, at two different concentrations of 0.1% and 0.3% by weight. The surface of carbon fiber was oxidized by chemical solutions. The conductivity of UHPFRC increased with increasing the carbon fiber content, and slightly better conductivity was obtained using the chemically treated carbon fibers than plain fibers at the lower content of 0.1 wt%. Both steel and carbon fibers were effective at improving the shielding effectiveness of ultra-high-performance concrete, and a higher shielding effectiveness was achieved for higher carbon fiber content. Surface treatment using the nitric acid solution was the most effective at enhancing the tensile performance and EM shielding effectiveness, and the best shielding effectiveness (49.0 dB at 1 GHz) was achieved for UHPFRC with 0.1 wt% nitric acid treated carbon fibers. The shielding effectiveness was found to be generally proportional to the electrical conductivity, although its increase was minor relative to that of the conductivity.
Wydawca

Rocznik
Strony
367--381
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • Department of Architectural Engineering, Hanyang University, 222 Wangsimni‑ro, Seongdong‑gu, Seoul 04763, Republic of Korea, dyyoo@hanyang.ac.kr
  • Department of Architectural Engineering, Hanyang University, 222 Wangsimni‑ro, Seongdong‑gu, Seoul 04763, Republic of Korea, cmway013@hanyang.ac.kr
  • Department of Architectural Engineering, Hanyang University, 222 Wangsimni‑ro, Seongdong‑gu, Seoul 04763, Republic of Korea, spstarg@hanyang.ac.kr
autor
  • Department of Architectural Engineering, Hanyang University, 222 Wangsimni‑ro, Seongdong‑gu, Seoul 04763, Republic of Korea, swonsik214@hanyang.ac.kr
autor
  • Department of Architectural Engineering, Hanyang University, 222 Wangsimni‑ro, Seongdong‑gu, Seoul 04763, Republic of Korea, tnsgh0905@hanyang.ac.kr
Bibliografia
  • [1] Muthusamy S, Chung DDL. Carbon-fiber cement-based materials for electromagnetic shielding. ACI Mater J. 2010;107(6):602–10.
  • [2] Lee N, Kim S, Park G. The effects of multi-walled carbon nanotubes and steel fibers on the AC impedance and electromagnetic shielding effectiveness of high-performance, fiber-reinforced cementitious composites. Materials. 2019;12(21):3591.
  • [3] Yoo DY, You I, Zi G, Lee SJ. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement. 2019;134:750–61.
  • [4] Banthia N, Djeridane S, Pigeon M. Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cem Concr Res. 1992;22(5):804–14.
  • [5] Baeza FJ, Galao O, Zornoza E, Garcés P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater Des. 2013;51:1085–94.
  • [6] Chiarello M, Zinno R. Electrical conductivity of self-monitoring CFRC. Cem Concr Compos. 2005;27(4):463–9.
  • [7] Azhari F, Banthia N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem Concr Compos. 2012;34(7):866–73.
  • [8] Han B, Yu X, Zhang K, Kwon E, Ou J. Sensing properties of CNT-filled cement-based stress sensors. J Civ Struct Heath Monit. 2011;1(1–2):17–24.
  • [9] Yoo DY, Kim S, Lee SH. Self-sensing capability of ultra-highperformance concrete containing steel fibers and carbon nanotubes under tension. Sens Actuators A Phys. 2018;276:125–36.
  • [10] Singh AP, Gupta BK, Mishra M, Chandra A, Mathur RB, Dhawan SK. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon. 2013;56:86–96.
  • [11] Wen S, Chung DDL. Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cem Concr Res. 2004;34(2):329–32.
  • [12] Chen J, Zhao D, Ge H, Wang J. Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application. Constr Build Mater. 2015;84:66–72.
  • [13] De Leo R, Gradoni G, Mazzoli A, Moglie F, Moriconi G, Primiani VM. Shielding effectiveness evaluation of densified-smallparticles (DSP) cement composite. In: IEEE 2008 international symposium on electromagnetic compatibility-EMC, Hamburg, Germany, 2008, pp 1–6.
  • [14] Dai Y, Sun M, Liu C, Li Z. Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem Concr Compos. 2010;32(7):508–13.
  • [15] Liu Z, Ge H, Wu J, Chen J. Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles. Constr Build Mater. 2017;151:575–81.
  • [16] Fu X, Chung DDL. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out. Cem Concr Res. 1995;25(7):1391–6.
  • [17] Fu X, Lu W, Chung DDL. Ozone treatment of carbon fiber for reinforcing cement. Carbon. 1998;36(9):1337–455.
  • [18] Fu X, Lu W, Chung DDL. Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix. Cem Concr Res. 1996;26(7):1007–122.
  • [19] Song W, Gu A, Liang G, Yuan L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl Surf Sci. 2011;257(9):4069–74.
  • [20] Richard P, Cheyrezy M. Composition of reactive powder concretes. Cem Concr Res. 1995;25(7):1501–11.
  • [21] Graybeal BA. Material property characterization of ultra-high performance concrete (No. FHWA-HRT-06–103). 2006.
  • [22] ACI Committee 239. Ultra-high performance concrete. ACI Fall Convention. Toronto, Ontario, Canada; 2012.
  • [23] Vande Voort TL. Design and field testing of tapered H-shaped ultra high performance concrete piles. M.S. thesis, Iowa State University, Iowa; 2008.
  • [24] Yoo DY, Kim MJ. High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Constr Build Mater. 2019;209:354–63.
  • [25] Yoo DY, Banthia N. Mechanical and structural behaviors of ultrahigh-performance fiber-reinforced concrete subjected to impact and blast. Constr Build Mater. 2017;149:416–31.
  • [26] Yoo DY, Yoon YS. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. Int J Concr Struct Mater. 2016;10(2):125–42.
  • [27] Yoo DY, Kim S, Park GJ, Park JJ, Kim SW. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultrahigh-performance fiber-reinforced cement composites. Compos Struct. 2017;174:375–88.
  • [28] ASTM C1437. Standard test method for flow of hydraulic cement mortar. West Conshohocken: ASTM International; 2013. p. 1–2.
  • [29] Graybeal BA. Flexural behavior of an ultrahigh-performance concrete I-girder. J Bridge Eng. 2008;13(6):602–10.
  • [30] Yoo DY, Kang ST, Yoon YS. Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Constr Build Mater. 2014;64:67–81.
  • [31] Wang C, Li KZ, Li HJ, Jiao GS, Lu J, Hou DS. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Mater Sci Eng: A. 2008;487(1–2):52–7.
  • [32] Katz A, Li VC, Kazmer A. Bond properties of carbon fibers in cementitious matrix. J Mater Civ Eng. 1995;7(2):125–8.
  • [33] Wang DW, Feng LI, Min LIU, Cheng HM. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation. New Carbon Mater. 2007;22(4):307–14.
  • [34] Jiang L, Wang J, Mao X, Xu X, Zhang B, Yang J, Wang Y, Zhu J, Hou S. High rate performance carbon nano-cages with oxygencontaining functional groups as supercapacitor electrode materials. Carbon. 2017;111:207–14.
  • [35] Paul CR. Introduction to electromagnetic compatibility. Hoboken: Wiley; 2006.
  • [36] JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Tokyo: Japan Society of Civil Engineers; 2008.
  • [37] Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. J Adv Concr Technol. 2006;4(1):3–17.
  • [38] Jung M, Lee YS, Hong SG. Effect of incident area size on estimation of EMI shielding effectiveness for ultra-high performance concrete with carbon nanotubes. IEEE Access. 2019;7:183105–17.
  • [39] Shahzad F, Kumar P, Yu S, Lee S, Kim YH, Hong SM, Koo CM. Sulfur-doped graphene laminates for EMI shielding applications. J Mater Chem C. 2015;3(38):9802–10.
  • [40] Luo S, Van Ooij WJ. Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol. 2002;16(13):1715–35.
  • [41] Yoo DY, Kim S, Kim MJ. Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions. Constr Build Mater. 2018;162:406–19.
  • [42] Breuer S, Prutsch D, Ma Q, Epp V, Preishuber-Pflügl F, Tietz F, Wilkening M. Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. J Mater Chem A. 2015;3(42):21343–50.
  • [43] Neithalath N, Jain J. Applications of electrical impedance methods in linking structure of micro-and macro-porous concretes to their transport properties. In: ACI Spring 2010 convention, 2010, pp 33–50.
  • [44] Wansom S, Kidner NJ, Woo LY, Mason TO. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem Concr Compos. 2006;28(6):509–19.
  • [45] Hixson AD, Woo LY, Campo MA, Mason TO, Garboczi EJ. Intrinsic conductivity of short conductive fibers in composites by impedance spectroscopy. J Electroceram. 2001;7(3):189–95.
  • [46] You I, Yoo DY, Kim S, Kim MJ, Zi G. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017;17(11):2481.
  • [47] Jou WS, Wu TL, Chiu SK, Cheng WH. Electromagnetic shielding of nylon-66 composites applied to laser modules. J Electron Mater. 2001;30(10):1287–93.
  • [48] Jou WS, Wu TL, Chiu SK, Cheng WH. The influence of fiber orientation on electromagnetic shielding in liquid-crystal polymers. J Electron Mater. 2002;31(3):178–84.
  • [49] Das NC, Liu Y, Yang K, Peng W, Maiti S, Wang H. Singlewalled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding. Polym Eng Sci. 2009;49(8):1627–34.
  • [50] Al-Ghamdi AA, Al-Hartomy OA, El-Tantawy F, Yakuphanoglu F. Novel polyvinyl alcohol/silver hybrid nanocomposites for high performance electromagnetic wave shielding effectiveness. Microsyst Technol. 2015;21(4):859–68.
  • [51] Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1(5):1640–71.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ab8ee22d-d621-42ee-89db-314e1c0dd33d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.