Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 26, Iss. 4 | 193--199
Tytuł artykułu

The assessment of consecutive 4D-CT scans during simulation for lung stereotactic body radiation therapy patients

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To evaluate the breathing amplitude, tumor motion, patient positioning, and treatment volumes among consecutive four-dimensional computed tomography (4D-CT) scans, during the simulation for lung stereotactic body radiation therapy (SBRT). Material and methods: The variation and shape of the breathing amplitude, patient positioning, and treatment volumes were evaluated for 55 lung cancer patients after consecutive 4D-CT acquisitions, scanned at one-week intervals. The impact of variation in the breathing amplitude on lung tumor motion was determined for 20 patients. The gross tumor volume (GTV) was contoured from a free-breathing CT scan and at ten phases of the respiratory cycle, for both 4D-CTs (440 phases in total). Results: Breathing amplitude decreased by 3.6 (3.4-4.9) mm, tumor motion by 3.2 (0.4-5.0) mm while breathing period increased by 4 (2-6) s, inter-scan for 20 patients. Intra-scan variation was 4 times greater for the breathing amplitude, 5 times for the breathing period, and 8 times for the breathing cycle, comparing irregular versus regular breathing patterns for 55 patients. Using coaching, the breathing amplitude increases 3 to 8 mm, and the breathing period 2 to 6 s. Differences in the contoured treatment volumes were less than 10% between consecutive scans. Patient positioning remained stable, with a small inter-scan difference of 1.1 (0.6-1.4) mm. Conclusion: Decreasing the inter-scan breathing amplitude decreases the tumor motion reciprocally. When the breathing amplitude decreases, the breathing period increases at inter- and intra-scan, especially during irregular breathing. Coaching improves respiration, keeping the initial shape of the breathing amplitude. Contoured treatment volumes and patient positioning were reproducible through successive scans.
Słowa kluczowe
Wydawca

Rocznik
Strony
193--199
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France, milovan_savanovic@yahoo.com
  • Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
  • MATER Private Hospital, Physics department, Eccles Street, Dublin 7, Ireland
  • Affidea, International Medical Centers, Center for Radiotherapy, 78000 Banja Luka, Bosnia, and Herzegovina
  • Department of Radiation Oncology, Tenon Hospital, 75020 Paris, France
Bibliografia
  • 1. Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in Radiation Oncology: An Update of Biological Targets and Technology. Sci Transl Med. 2013;5(173): 173sr2.
  • 2. Keall PJ, Mageras GS, Balter JM, et al. The management of Respiratory Motion in Radiation Oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874-3900.
  • 3. Haasbeek CJ, Lagerwaard FJ, Slotman BJ, Senan S. Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. J Thorac Oncol. 2011 Dec;6(12):2036-43.
  • 4. Hoffman D, Dragojević I, Hoisak J, Hoopes D, Manger R. Lung Stereotactic Body Radiation Therapy (SBRT) dose gradient and PTV volume: a retrospective multi-center analysis. Radiat Oncol. 2019 Sep 3;14(1):162.
  • 5. Wang Y, Bao Y, Zhang L et al. Assessment of respiration-induced motion and its impact on treatment outcome for lung cancer. Biomed Res Int. 2013;2013:872739.
  • 6. Molitoris JK, Diwanji T, Snider JW 3rd et al. Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis. 2018 Aug;10(Suppl 21):S2437-S2450.
  • 7. Bai T, Zhu J, Yin Y, Lu J, Shu H, Wang L, Yang B. How does four-dimensional computed tomography spare normal tissues in nonsmall cell lung cancer radiotherapy by defining internal target volume? Thoracic Cancer. 2014 Nov;5(6):537-542.
  • 8. Aznar MC, Persson GF, Kofoed IM, Nygaard DE, Korreman SS. Irregular breathing during 4DCT scanning of lung cancer patients: is the midventilation approach robust? Phys Med 2014;30:69–75.
  • 9. Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med Phys. 2017;44(6):2595-2612.
  • 10. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R. Patient training in respiratory-gated radiotherapy. Med Dosim. 2003 Spring; 28(1):7-11.
  • 11. Goossens S, Senny F, Lee JA, Janssens G, Geets X. Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions. J Appl Clin Med Phys 2014; 15: 4332.
  • 12. Guckenberger M, Wilbert J, Meyer J, Baier K, Richter A, Flentje M. Is a Single Respiratory Correlated 4D-CT Study Sufficient for Evaluation of Breathing Motion? Int J Radiat Oncol Biol Phys. 2007 Apr 1; 67(5):1352-59.
  • 13. Michalski D, Sontag M, Li F et al. Four-dimensional Computed Tomography-Based Interfractional Reproducibility Study of Lung Tumor Intrafractional Motion. Int J Radiat Oncol Biol Phys. 2008 Jul 1; 71(3):714-24.
  • 14. Hubie C, Shaw M, Bydder S et al. A rondomised comparison of three different immobilisation devices for thoracic and abdominal cancers. J Mec Radiat Sci. 2017 Jun; 64(2):90-96.
  • 15. Fischbach F, Knollmann F, Griesshaber V, Freund T, Akkol E, Felix R. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol. 2003 Oct;13(10):2378-83.
  • 16. Radiation therapy oncology group. Lung cancer atlas for radiation therapy planning: consensus definitions. http://www.rtog.org/CoreLab/
  • 17. Li Y, Ma JL, Chen X, Tang FW, Zhang XZ. 4DCT and CBCT based PTV margin in Stereotactic Body Radiotherapy(SBRT) of nonsmall cell lung tumor adhered to chest wall or diaphragm. Radiat Oncol. 2016; 11: 152.
  • 18. Sonke JJ, Lebesque J, van Herk M. Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys. 2008 Feb 1; 70(2):590-8.
  • 19. Hau E, Rains M, Pham T, Muirhead R, Yeghiaian Alvandi R. Potential benefits and pitfalls of respiratory-gated radiotherapy in the treatment of thoracic malignancy. Asia Pac J Clin Oncol. 2014 Jun; 10(2):e13-20.
  • 20. George R, Chung TD, Vedam SS, et al. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 2006; 65: 924–33.
  • 21. van der Geld YG, Lagerwaard FJ, van Sörnsen de Koste JR, Cuijpers JP, Slotman BJ, Senan S. Reproducibility of target volumes generated using uncoached 4-dimensional CT scans for peripheral lung cancer. Radiat Oncol. 2006; 1:43.
  • 22. Korreman SS, Juhler-Nøttrup T, Boyer AL. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol. 2008 Jan; 86(1):61-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ab5745b5-9d9e-4405-80db-83c10bca6842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.