Czasopismo
2023
|
Vol. 23, no. 2
|
art. no. e136, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The present work investigated the effects of primary sintering on the microstructure, mechanical, electrical, and wear properties of the Cu-5vol%Ti2SnC wire composite fabricated by friction stir back extrusion process. The results showed that the grain size of the final product increased by performing a sintering treatment before the FSBE process. It is important to note that the grain size in the composite sample was coarser than the sample without reinforcement after the extrusion process. Furthermore, since the effect of temperature predominates over plastic strain, a coarser grain was formed in the composite samples. Compared to the center, the grain size of the near surface of extruded wires was slightly finer. By performing the sintering treatment and applying heat during the treatment, it is possible to form the Cu81Sn22 phase, which can increase the Cu81Sn22 phase content formed during FSBE. The interface quality was significantly improved by the sintering treatment before the FSBE process. The sintering treatment increased the strength, elongation, electrical conductivity, and wear resistance of Cu-Ti2SnC composite wire by 4, 13, 2, and 5%, respectively.
Czasopismo
Rocznik
Tom
Strony
art. no. e136, 2023
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran, h.jamshidi@nit.ac.ir
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
Bibliografia
- 1. Avcu E, Cao H, Zhang X, Guo Y, Withers PJ, Li X, et al. The effect of reduced graphene oxide content on the microstructural and mechanical properties of copper metal matrix composites. Mater Sci Eng A. 2022;856: 143921.
- 2. Brillon A, Heintz J-M, Constantin L, Pillier F, Lu Y, Silvain J-F, et al. Anisotropic thermal conductivity and enhanced hardness of copper matrix composite reinforced with carbonized polydopamine. Compos Commun. 2022;33: 101210.
- 3. Yu W, Guenole J, Ghanbaja J, Vallet M, Guitton A. Frank partial dislocation in Ti2AlC-MAX phase induced by matrix-Cu diffusion. Scripta Mater. 2021;191:34-9.
- 4. Huang X, Feng Y, Qian G, Zhao H, Zhang J, Zhang X. Physical, mechanical, and ablation properties of Cu-Ti3AlC2 composites with various Ti3AlC2 contents. Mater Sci Technol. 2018;34(6):757-62.
- 5. Sun Z. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev. 2011;56(3):143-66.
- 6. Low I-M. MAX phases and ultra-high temperature ceramics for extreme environments: IGI Global; 2013.
- 7. Salvo C, Chicardi E, Hernández-Saz J, Aguilar C, Gnanaprakasam P, Mangalaraja R. Microstructure, electrical and mechanical properties of Ti2AlN MAX phase reinforced copper matrix composites processed by hot pressing. Mater Charact. 2021;171: 110812.
- 8. Solodkyi I, Bezdorozhev O, Loboda P. High electrical conductive copper matrix composites reinforced with LaB6-TiB2 eutectic particles. Vacuum. 2020;177: 109407.
- 9. Jamwal A, Mittal P, Agrawal R, Gupta S, Kumar D, Sadasivuni KK, et al. Towards sustainable copper matrix composites: manufacturing routes with structural, mechanical, electrical and corrosion behaviour. J Compos Mater. 2020;54(19):2635-49.
- 10. Gelaw M, Ramulu PJ, Hailu D, Desta T. Manufacturing and mechanical characterization of square bar made of aluminium scraps through friction stir back extrusion process. Journal of Engineering, Design and Technology. 2018;16(4):596-615.
- 11. Mathew N, Dinaharan I, Vijay S, Murugan N. Microstructure and mechanical characterization of aluminum seamless tubes produced by friction stir back extrusion. Trans Indian Inst Met. 2016;69(10):1811-8.
- 12. Buffa G, Campanella D, Micari F, Fratini L. Design and development of a new machine tool for continuous friction stir extrusion. CIRP J Manuf Sci Technol. 2023;41:391-400.
- 13. Yuan L, Zeng X, Zhao X, Xie Y, Gandra J, Guan D. Microstructure evolution and tensile behaviour of fine-grained 6082 Al wire with high ultimate strength and high work hardening by friction stir extrusion of bulk Al sheet. Mater Sci Eng A. 2023;2023:144589.
- 14. Li X, Zhou C, Overman N, Ma X, Canfield N, Kappagantula K, et al. Copper carbon composite wire with a uniform carbon dispersion made by friction extrusion. J Manuf Process. 2021;65:397-406.
- 15. Jahani A, Jamshidi Aval H, Rajabi M, Jamaati R. Effects of Ti2Sn MAX phase reinforcement content on the properties of copper matrix composite produced by friction stir back extrusion process. Mater Chem Phys. 2023;299: 127497.
- 16. Akbari M, Asadi P. Brass wire forming by friction stir back extrusion: numerical modeling and experiment. 2021.
- 17. Jahani A, Jamshidi Aval H, Rajabi M, Jamaati R. Effects of Ti2SnC MAX phase on microstructure, mechanical, electrical, and wear properties of stir-extruded copper matrix composite. Adv Eng Mater. 2023;25:2201463.
- 18. Sabbaghian M, Shamanian M, Akramifard H, Esmailzadeh M. Effect of friction stir processing on the microstructure and mechanical properties of Cu-TiC composite. Ceram Int. 2014;40(8):12969-76.
- 19. Akbari M, Asadi P. Optimization of microstructural and mechanical properties of brass wire produced by friction stir extrusion using Taguchi method. Proc Inst Mech Eng Part L J Mater Des Appl. 2021;235(12):2709-19.
- 20. Dickson M. The significance of texture parameters in phase analysis by X-ray diffraction. J Appl Crystallogr. 1969;2(4):176-80.
- 21. Barmouz M, Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos A Appl Sci Manuf. 2011;42(10):1445-53.
- 22. Zohoor M, Givi MB, Salami P. Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing. Mater Des. 2012;39:358-65.
- 23. Bahador A, Umeda J, Hamzah E, Yusof F, Li X, Kondoh K. Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles. Mater Sci Eng A. 2020;772: 138797.
- 24. Dinaharan I, Saravanakumar S, Kalaiselvan K, Gopalakrishnan S. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing. J Asian Ceram Soc. 2017;5(3):295-303.
- 25. Wei J, Li Z, Han F. Thermal mismatch dislocations in macroscopic graphite particle‐reinforced metal matrix composites studied by internal friction. Physica Status Solidi (A). 2002;191(1):125-36.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ab035e13-ceab-408a-a926-686d1190b0d1