Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 24, Fasc. 2 | 297--320
Tytuł artykułu

Local large deviation theorem for sums of i.i.d. random vectors when the Cramér condition holds in the whole space

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A class of multidimensional distributions is considered. This class contains all the elliptically contoured distributions having sup-exponential weight function. Each representative of the class determines a family of the so-called exponential or conjugate distributions. It is established that the conjugate distribution is asymptotically normal. On the basis of this normality a large deviation local limit theorem is proved. The theorem assumes no restrictions on the order of deviations.
Wydawca

Rocznik
Strony
297--320
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] R. R. Bahadur and S. L. Zabell, Large deviations of the sample mean in general vector space, Ann. Probab. 7 (4) (1979), pp. 587-621.
  • [2] B. von Bahr, Multidimensional integral limit theorems for large deviations, Ark. Mat. 7 (1967), pp. 89-99.
  • [3] A. Balkema, C. Klüppelberg and S. Resnick, Limit laws for exponential families, Bernoulli 5 (6) (1999), pp. 951-968.
  • [4] R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, New York 1976.
  • [5] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
  • [6] A. A. Borovkov and A. Rogozin, On the central limit theorem in the higher-dimensional case, Theory Probab. Appl. 10 (1965), pp. 61-69.
  • [7] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett Publishers, Boston 1993.
  • [8] J. D. Deuschel and D. W. Stroock, Large Deviations, Academic Press, New York 1989.
  • [9] R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer, Berlin 1985.
  • [10] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1971.
  • [11] A. V. Nagaev, Large deviations for a class of distributions (in Russian), in: Limit Theorems of the Theory of Probability, Acad. Sci. Uzbek. Soc. Rep. Publ. House, Tashkent 1963, pp. 71-88.
  • [12] A. V. Nagaev and A. Yu. Zaigraev, Abelian theorems for a class of probability distributions in Rd and their application, J. Math. Sci. 99 (4) (2000), pp. 1454-1462.
  • [13] A. V. Nagaev and A. Yu. Zaigraev, Abdian theorems, limit properties of conjugate distributions and large deviations for sums of independent random vectors (in Russian), Theory Probab. Appl. 48 (4) (2003), pp. 701-719.
  • [14] S. V. Nagaev, Large deviations of sums of independent random variables, Ann. Probab. 7 (5) (1979), pp. 745-789.
  • [15] L. V. Osipov, The probability of large deviations of sum of independent random vectors for some classes of sets, Mat. Zametki 31 (1) (1982), pp. 147-155, 160.
  • [16] L. V. Rozovski, Probabilities of large deviations on the whole axis, Theory Probab. Appl. 38 (1) (1993), pp. 53-79.
  • [17] I. N. Sanov, On the probability of large deviations of random variables (in Russian), Mat. Sb. 42 (1) (1957), pp. 11-44. English Translation: Selected Translations in Mathematical Statistics and Probability, 1961, pp. 213-244.
  • [18] A. Yu. Zaigraev, Multivariate large deviations for sums of i.i.d. random vectors with compactly supported distribution, Probab. Math. Statist. 23 (2) (2003), pp. 315-335.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aaf8c51d-9fb0-4fdd-b080-470b22190910
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.