Czasopismo
2022
|
Vol. 22, no. 4
|
art. no. e197, 2022
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In order to investigate the ultimate bearing capacity of hybrid fiber cement-based composite (HFC) encased concrete-filled steel tube (CFST) columns under axial compression. This study conducted theoretical analysis on HFC encased CFST columns. Theoretical formulas of the ultimate bearing capacity for the HFC encased CFST columns based on the elastoplastic theory and limit analysis method are presented. The calculated results of the theoretical formulas are compared with the experimental results and the values calculated by the typical codes. The results show that the theoretical models have high accuracy in predicting the ultimate bearing capacity of HFC encased CFST columns.
Czasopismo
Rocznik
Tom
Strony
art. no. e197, 2022
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China
autor
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China
autor
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou 325035, China, liweiwoaini521@hotmail.com
Bibliografia
- [1] Le Minh H, Khatir S, Wahab MA, Cuong-Le T. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. J Build Eng. 2021;44: 103239.
- [2] Ahmadi M, Naderpour H, Kheyroddin A, Gandomi AH. Seismic failure probability and vulnerability assessment of steel-concrete composite structures. Period Polytech Civil Eng. 2017;61(4):939–50.
- [3] Li ZH, Peng ZH, Teng J, Wang Y. Experimental study of damage evolution in circular stirrup-confined concrete. Materials. 2016;9(4):278.
- [4] Pour AF, Gholampour A, Zheng JN, Ozbakkaloglu T. Behavior of FRP-confined high-strength concrete under eccentric compression: tests on concrete-filled FRP tube columns. Compos Struct. 2019;220:261–72.
- [5] Yang YK, Wu CQ, Liu ZX, Qin Y, Wang WQ. Comparative study on square and rectangular UHPFRC-Filled steel tubular (CFST) columns under axial compression. Structures. 2021;34:2054–68.
- [6] Ellobody E, Young B, Lam D. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J Constr Steel Res. 2006;62(7):706–15.
- [7] Jeddi MZ, Sulong NR, Ghanbari-Ghazijahani T. Behaviour of double-sleeve tube bolt moment connections in CFT columns under cyclic loading. J Constr Steel Res. 2022;194: 107302.
- [8] Yuan F, Huang H, Chen MC. Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns. Thin-Walled Struct. 2019;135:196–209.
- [9] Ayough P, Ibrahim Z, Sulong NHR, Hsiao PC. The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns. J Constr Steel Res. 2021;176: 106424.
- [10] Liu FQ, Gardner L, Yang H. Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes. J Constr Steel Res. 2014;102:82–103.
- [11] Guo HC, Long X, Yao Y. Fire resistance of concrete filled steel tube columns subjected to non-uniform heating. J Constr Steel Res. 2017;128:542–54.
- [12] Han LH, Yao GH, Zhao XL. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res. 2005;61(9):1241–69.
- [13] Uy B, Tao Z, Han LH. Behaviour of short and slender concrete-filled stainless steel tubular columns. J Constr Steel Res. 2011;67(3):360–78.
- [14] Cai JM, Pan JL, Li XP. Behavior of ECC-encased CFST columns under axial compression. Eng Struct. 2018;171:1–9.
- [15] Dai XH, Lam D. Shape effect on the behaviour of axially loaded concrete filled steel tubular stub columns at elevated temperature. J Constr Steel Res. 2012;73:117–27.
- [16] Romero ML, Espinos A, Lapuebla-Ferri A, Albero V, Hospitaler A. Recent developments and fire design provisions for CFST columns and slim-floor beams. J Constr Steel Res. 2020;172: 106159.
- [17] Zhang YB, Han LH, Zhou K, Yang ST. Mechanical performance of hexagonal multi-cell concrete-filled steel tubular (CFST) stub columns under axial compression. Thin-Walled Struct. 2019;134:71–83.
- [18] Hassanein MF, Elchalakani M, Karrech A, Patel VI, Daher E. Finite element modelling of concrete-filled double-skin short compression members with CHS outer and SHS inner tubes. Mar Struct. 2018;61:85–99.
- [19] Nie JG, Bai Y, Cai CS. New connection system for confined concrete columns and beams. I: experimental study. J Struct Eng ASCE. 2008;134(12):1787–99.
- [20] Wang G. Study on flexural behaviors of steel tube confined concrete members and composite steel tube confined concrete members. Master Dissertations Beijing, China: Tsinghua University; 2004 [in Chinese].
- [21] Wang LJ, Chi YH. Experimental research on the bearing capacity of axially loaded composite columns with concrete core encased by steel tube. Proceedings of the fourth international conference on advances in steel structures; 2005.
- [22] Han LH, Liao FY, Tao Z, Hong Z. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending. J Constr Steel Res. 2009;65:1607–16.
- [23] Han LH, An YF. Performance of concrete-encased CFST stub columns under axial compression. J Construct Steel Res. 2014;93:62–76.
- [24] Ma YX, Zhao O, Tan KH. Experimental and numerical studies of concrete-encased concrete-filled steel tube stub columns under uniaxial and biaxial eccentric compression. Eng Struct. 2021;232: 111796.
- [25] Chang YJ, Chen WL, Xiao Q, Rong EC, Peng LX. Theoretical and experimental study on axial compression concrete-filled tubes with different confinements. J Constr Steel Res. 2021;185:106862.
- [26] Wu QX, She ZM, Yuan HH. Experimental study of UHPC-encased CFST stub columns under axial compression. Structures. 2021;321:433–47.
- [27] Tang HY, Chen JL, Yue Z, Yue ZY, Jia YG, Yuan ZJ. Theoretical and numerical analysis on the ultimate bearing capacity of CFRP-confined CFSST stub columns. Archiv Civil Mech Eng. 2022;22(1):26.
- [28] İpek S, Güneyisi EM. Nonlinear finite element analysis of double skin composite columns subjected to axial loading. Archiv Civil Mech Eng. 2020;20(1):9.
- [29] Chen ZH, Liu J, Zhou T, Yan XY, Zhang X. Uniaxial eccentric-compression performance analysis for double-plate connected concrete-filled steel-tube composite columns. J Struct Eng ASCE. 2020;146(8):04020161.
- [30] Hong HP, Yuan H, Deng L, Bai Y. Axial capacity of steel tube-reinforced concrete stub columns. Eng Struct. 2019;183:523–32.
- [31] Chen JY, Wang FC, Han LH, Mu TM. Flexural performance of concrete-encased CFST box members. Structures. 2020;27:2034–47.
- [32] An YF, Han LH. Behaviour of concrete-encased CFST columns under combined compression and bending. J Constr Steel Res. 2014;101:314–30.
- [33] Hu CM, Han LH, Hou CC. Concrete-encased CFST members with circular sections under laterally low velocity impact: analytical behaviour. J Constr Steel Res. 2018;146:135–54.
- [34] Zhu X, Kang M, Fei YF, Zhang Q, Wang R. Impact behavior of concrete-filled steel tube with cruciform reinforcing steel under lateral impact load. Eng Struct. 2021;247: 113104.
- [35] Ke XJ, Yang TT, Li JT. Restoring force model of high-strength concrete-encased CFST composite columns. Struct Design Tall Spec Build. 2021;30(18): e1894.
- [36] Aslani F, Samali B. Constitutive relationships for steel fibre reinforced concrete at elevated temperatures. Fire Technol. 2014;50(5):1249–68.
- [37] Pan ZF, Wu C, Liu JZ, Wang W, Liu JW. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr Build Mater. 2015;78:397–404.
- [38] Lee CK, Khan MKI, Zhang YX, Rana MM. Compressive performance of ECC-concrete encased high strength steel composite columns. Eng Struct. 2020;213: 110567.
- [39] Guler S, Yavuz D, Aydın M. Hybrid fiber reinforced concrete-filled square stub columns under axial compression. Eng Struct. 2019;198: 109504.
- [40] Zhang J, Wang Q, Wang ZB. Properties of polyvinyl alcohol-steel hybrid fiber-reinforced composite with high-strength cement matrix. J Mater Civ Eng ASCE. 2017;29(7):04017026.
- [41] Sahloddin Y, Dalvand A, Ahmadi M, Hatami H, Khaneghahi MH. Performance evaluation of built-up composite beams fabricated using thin-walled hollow sections and self-compacting concrete. Constr Build Mater. 2021;305: 124645.
- [42] GB/T 50010-2010. Code for Design of Concrete Structures, China Architecture & Building Press, Beijing, 2017 (in Chinese).
- [43] JGJ/T 3-2010. Technical Specifications for Concrete Structures of High-rise Buildings. China Architecture & Building Press, Beijing, 2010 (in Chinese).
- [44] Lu MW, Luo XF. Theoretical basis of elasticity. Beijing: Tsinghua University Press; 2001. (in Chinese).
- [45] Sun LZ, Hao Q, Zhao JL, Wu DY, Yang F. Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression. Constr Build Mater. 2018;188:349–60.
- [46] Jiang Z, Qian JR. Research on the axial compressive bearing capacity of CFST short columns and the effect of steel tubes. Build Struct. 2010;40(08):94–8 (in Chinese).
- [47] Ye YY, Zhu DH, Zeng JJ, Lin G, Wang WQ. Rectangular double-tube concrete columns with an internal elliptical high-strength steel tube: concept and behavior. Eng Struct. 2020;216: 110742.
- [48] Wu WJ. Research on the axial compression performance of hybrid fiber cement-based composite material-steel pipe-concrete composite column. Master Dissertations Wenzhou, China: Wenzhou University, 2022 (in Chinese).
- [49] ANSI/AISC 360-16. Specification for structural steel buildings. Chicago, USA: American Institute of Steel Construction (AISC);2016.
- [50] Eurocode 4. Design of Composite Steel and Concrete Structures Part1-1: General Rules-Structural Rules for Buildings, European Committee for Standardization; Brussels. EN 1994-1-2:2004, 2004.
- [51] CECS 188-2005. Technical Specification for Steel Tube-Reinforced Concrete Column Structure, China Engineering Construction Standardization Association Professional Committee of Concrete Structures, Beijing, China; 2005 (in Chinese).
- [52] GB 50936-2014. Technical Code for Concrete Filled Steel Tubular Structures, Beijing: China Building Industry Press, 2014 (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aac00a10-79b8-4b8b-b528-68b01cea0820