Czasopismo
2021
|
Vol. 28, no. 1
|
39--55
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an algorithm for structural design optimization of steel beams andframes with web-tapered members using the particle swarm optimization (PSO) algorithmand the finite element method (FEM). The design optimization is done in accordancewith Eurocode 3 (EC 3) for the minimum mass. The proposed algorithm is more flexibleand efficient than traditional design methods based on a trial and error approach. Theeffectiveness of the presented PSO-FEM algorithm is evaluated on examples of the sizeoptimization of web-tapered members cross-section. The results show that the PSO-FEM algorithm is feasible and effective for finding useful designs.
Rocznik
Tom
Strony
39--55
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Computational Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
autor
- Computational Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland, marek.slonski@pk.edu.pl
Bibliografia
- 1. H. Aucamp, The optimisation of web-tapered portal frame buildings, Master’s thesis, Stellenbosch University, Republic of South Africa, 2017, https://scholar.sun.ac.za/bit-stream/handle/10019.1/101099/aucamp_optmisation_2017.pdf?sequence=1.
- 2. P. Hradil, M. Mielonen, L. Fülöp, Optimization tools for steel portal frames-effective modelling of lateral supports, Research report VTT-R-00567-11, VTT Technical Research Centre of Finland, Espoo, 2011.
- 3. R.C. Kaehler, D.W. White, Y.D. Kim, Frame design using web-tapered members, American Institute of Steel Construction, 2011.
- 4. L. Marques, L.S. da Silva, C. Rebelo, A. Santiago, Extension of EC3-1-1 interaction for-mulae for the stability verification of tapered beam-columns, Journal of Constructional Steel Research, 100: 122–135, 2014.
- 5. W.Y. Jeong, Structural analysis and optimized design of general nonprismatic I-section members, Ph.D. thesis, Georgia Institute of Technology, USA, 2014.
- 6. A. Kaveh, M.H. Ghafari, Geometry and sizing optimization of steel pitched roof frameswith tapered members using nine metaheuristics, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(1): 1–8, 2019.
- 7. O. Hasançebi, S. Çarbaş, E. Dogan, F. Erdal, M.P. Saka, Comparison of non-deterministic search techniques in the optimum design of real size steel frames, Computers & Structures,88(17–18): 1033–1048, 2010.
- 8. R.E. Perez, K. Behdinan, Particle swarm approach for structural design optimization, Computers & Structures, 85(19–20): 1579–1588, 2007, https://www.sciencedi-rect.com/science/article/abs/pii/S0045794907000399.
- 9. M.G. Sahab, V.V. Toropov, A.H. Gandomi, A review on traditional and modernstructural optimization: problems and techniques, [in:] A.H. Gandomi, X.-S. Yang,S. Talatahari, A.H. Alavi [Eds], Metaheuristic Applications in Structures and Infrastructures, pp. 25–47, Elsevier, 2013, https://www.sciencedirect.com/science/article/pii/B9780123983640000024.
- 10. P. Christensen, A. Klarbring, An introduction to structural optimization, Springer Science & Business Media, 2009, https://link.springer.com/book/10.1007/978-1-4020-8666-3.
- 11. M. Kleiber (ed.),Handbook of computational solid mechanics: survey and comparison of contemporary methods, Springer, Berlin, Heidelberg, 1998, https://books.google.pl/books?id=YVvJMAEACAAJ.
- 12. J. Kennedy, R. Eberhart, Particle swarm optimization, [in:] Proceedings of ICNN’95 – International Conference on Neural Networks, Perth, Australia, Vol. 4, pp. 1942–1948,IEEE, 1995, https://ieeexplore.ieee.org/document/488968.
- 13. D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft Computing, 22(2): 387–408, 2018, https://link.springer.com/article/10.1007%2Fs00500-016-2474-6.
- 14. A.H. Gandomi, X.-S. Yang, S. Talatahari, A.H. Alavi, Metaheuristic algorithms in modeling and optimization, [in:] Metaheuristic Applications in Structures and Infrastructures, pp. 1–24, Elsevier, 2013, https://www.sciencedirect.com/science/article/pii/B9780123983640000012.
- 15. EN 1993, Eurocode 3: Design of steel structures, CEN, 2004.
- 16. M.P. Saka, Optimum design of steel frames with tapered members, Computers & Structures, 63(4): 797–811, 1997.
- 17. P. Hradil, M. Mielonen, L. Fülöp, Advanced design and optimization of steel portal frames, Journal of Structural Mechanics, 43(1): 44–60, 2010.
- 18. M.J. Turner, R.W. Clough, H.C. Martin, L.J. Topp, Stiffness and deflection analysis ofcomplex structures, Journal of the Aeronautical Sciences, 23(9): 805–823, 1956.
- 19. O. Zienkiewicz, The finite element method, 3rd ed., McGraw-Hill, New York, 1977.
- 20. F. Sahin, A. Devasia, Distributed particle swarm optimization for structural Bayesian network learning, [in:] F. Chan, M.K. Tiwari [Eds],Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 532 IntechOpen, Vienna, Austria, 2007, https://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/distributed_particle_swarm_optimization_for_structural_bayesian_network_learning.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aab18e4b-d214-4a40-865b-10518c7dc9ff