Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 29, Fasc. 1 | 135--154
Tytuł artykułu

Nested subclasses of some subclass of the class of type G selfdecomposable distributions on Rd

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nested subclasses, denoted by Mn(Rd); n = 1; 2,…,of the class M(Rd), a subclass of the class of type G and selfdecomposable distributions on Rd are studied. An analytic characterization in terms of Lévy measures and a probabilistic characterization by stochastic integral representations for M(Rd) are known. In this paper, analytic characterizations for Mn(Rd); n = 1; 2,…,are given in terms of Lévy measures as well as probabilistic characterizations by stochastic integral representations are shown. A relationship with stable distributions is given.
Wydawca

Rocznik
Strony
135--154
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
Bibliografia
  • [1] T. Aoyama and M. Maejima, Characterizations of subclasses of type G distributions on Rd by stochastic integral representations, Bernoulli 13 (2007), pp. 148-160.
  • [2] T. Aoyama, M. Maejima and J. Rosi ´nski, A subclass of type G selfdecomposable distributions, J. Theoret. Probab. 21 (2008), pp. 14-34.
  • [3] O. E. Barndorff-Nielsen, M. Maejima and K. Sato, Some classes of multivariate infinitely divisible distributions admitting stochastic integral representation, Bernoulli 12 (2006), pp. 1-33.
  • [4] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition, Wiley, 1966.
  • [5] Z. J. Jurek, Relations between the s-selfdecomposable and selfdecomposable measures, Ann. Probab. 13 (1985), pp. 592-608.
  • [6] B. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), pp. 451-487.
  • [7] J. Rosiński, On series representations of infinitely divisible random vectors, Ann. Probab. 18 (1990), pp. 405-430.
  • [8] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
  • [9] K. Sato, Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41 (2004), pp. 211-236.
  • [10] K. Sato, Additive processes and stochastic integrals, Illinois J. Math. 50 (Doob Volume) (2006), pp. 825-851.
  • [11] K. Urbanik and W. A. Woyczyński, Random integrals and Orlicz spaces, Bull. Acad. Polon. Sci. 15 (1967), pp. 161-169.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aaadb7e1-0f8b-4aa3-8e8d-349f48fe93e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.