Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Y. 113, iss. 1-M | 183--194
Tytuł artykułu

The systematic design of CO2 capture rocesses applied to the oxidative coupling of methane

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Usuwanie ditlenku węgla przy utleniającej konwersji metanu
Języki publikacji
EN
Abstrakty
EN
The oxidative coupling of methane is the catalytic conversion of methane into ethene. Carbon dioxide is generated as a reaction by-product and must be removed from the gaseous stream. In this paper, the application of a hybrid carbon dioxide removal process including absorption with amines and gas separation membranes is investigated through simulations and cost estimations.
PL
Utleniające łączenie cząsteczek metanu do etenu możliwe jest na drodze katalitycznej konwersji metanu. Dwutlenek węgla powstaje jako produkt uboczny reakcji i musi być usuwany z gazowego strumienia. W niniejszym artykule, przedstawiono hybrydowy proces usuwania CO2: absorpcji z aminami i separacji membranowej oraz szacunek kosztów.
Wydawca

Rocznik
Strony
183--194
Opis fizyczny
Bibliogr. 24 poz., wykr., il.
Twórcy
autor
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
autor
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
autor
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
autor
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
autor
  • Process Dynamics and Operations Group, Faculty of Process Sciences, Technical University of Berlin
Bibliografia
  • [1] EA, Technology Roadmap: Carbon Capture and Storage, International Energy Agency, Paris 2013.
  • [2] Ashcroft A.T., Cheetham A.K., Foord J.S., Green M.L.H., Grey C.P., Murrell A.J., Vernon P.D.F., Selective oxidation of methane to synthesis gas using transition metal catalysts, Nature, vol. 344, 1990, 319-321.
  • [3] True W., Global ethylene capacity continues advance in 2011, Oil & Gas Journal, vol.7(110), 2012.
  • [4] Kinnaman T.C., The economic impact of shale gas extraction: A review of existing studies, Ecological Economics, vol. 7, 15 May 2011, 1243-1249.
  • [5] Fischer J., Methane-to-Ethylene Plant Comes Online in Texas, NGI Weekly Gas Market Report, 06 April 2015.
  • [6] Su Y.S., Ying J.Y., Green Jr. W.H., Upper bound on the yield for oxidative coupling of methane, Journal of Catalysis, vol. 218(2), 2003, 321-333.
  • [7] Agbonghae E.O., Hughes K., Ingham D.B., Ma L., Pourkashanian M., Optimal Process Design of Commercial-Scale Amine-Based CO2 Capture Plants, Ind. Eng. Chem. Res., vol. 38, 2014, 14815-14829.
  • [8] Feng Z., Cheng-Gang F., You-Ting W., Yuan-Tao W., Ai-Min L., Zhi-Bing Zhang, Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA, Chemical Engineering Journal, vol. 1, 2010, 691-697.
  • [9] Damartzis T., Papadopoulos A.I., Seferlis P., Generalized Framework for the Optimal Design of Solvent-Based Post-Combustion CO2 Capture Flowsheets, Chemical Engineering Transactions, 2013.
  • [10] Moioli S., Giuffrida A., Gamba S., Romano M.C., Pellegrini L., Lozza G., Precombustion CO2 capture by MDEA process in IGCC based on air-blown gasification, Energy Procedia, vol. 63, 2014, 2045-2053.
  • [11] Rufford T.E., Smart S., Watson G.C.Y., Graham B.F., Boxall J., Diniz da Costa J.C., May E. F., The removal of CO2 and N2 from natural gas: A review of conventional and emerging technologies, Journal of Petroleum Science and Engineering, vol. 94-95 2012, 123-154.
  • [12] Bernardo P., Drioli E., Golemme G., Membrane Gas Separation: A Review/State of the Art, Ind. Eng. Chem. Res., 2009, 4638-4663.
  • [13] Brinkmann T., Naderipour C., Pohlmann J., Wind J., Wolff T., Esche E., Müller D., Wozny G., Hoting B., Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly(ethyleneoxide)-poly(butyleneterephthalate) PolyActiveTM) thin film composite membranes, Journal of Membrane Science, vol. 489, 2015, 237-247.
  • [14] Stünkel S., Illmer D., Kraus R., Wozny G., On the design, development and operation of an energy efficient CO2 removal for the oxidative coupling of methane in a miniplant scale, Applied Thermal Engineering, vol. 43, 2012, 143-147.
  • [15] Song S., Esche E., Stünkel S., Brinkmann T., Wind J., Shishatskiy S., Wozny G., Energy, Equipment and Cost Savings by Using a Membrane Unit in an Amine-Based Absorption Process for CO2 Removal, Chemie Ingenieur Technik, vol. 8, August 2013,1221-1227.
  • [16] Esche E., Müller D., Song S., Wozny G., Optimization during the process synthesis: enabling the oxidative coupling of methane by minimizing the energy required for the carbon dioxide removal, Journal of Cleaner Production, vol. 91, 2015,100-108.
  • [17] Esche E., MINLP Optimization under Uncertainty of a Mini-plant for the Oxidative Coupling of Methane, PhD Thesis, Technische Universität Berlin, 2015.
  • [18] Penteado A., Esche E., Wozny G., Implementation of a Customized Gas-Separation Membrane Model into Commercial Flowsheeting Software to Simulate a Hybrid CO2 Removal Process for Oxidative Coupling of Methane, AIChE Annual Meeting 2015, Salt Lake City, US, 2015.
  • [19] Zhang Y., Chen C.-C., Thermodynamic Modeling for CO2 Absorption in Aqueous MDEA Solution with Electrolyte NRTL Model, Ind. Eng. Chem. Res., vol. 1, 2011, 163-175.
  • [20] Ohlrogge K., Ebert K., Membranen: Grundlagen, Verfahren und industrielle Anwendungen, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
  • [21] Peng D.-Y., Robinson D.B., A new two-constant equation of state, Ind. Eng. Chem. Fundament., vol. 1, 1976, 59-64.
  • [22] Kuntsche S., Arellano-Garcia H., Wozny G., MOSAIC, an environment for webbased modeling in the documentation level, Computer Aided Chemical Engineering, vol. 29, 2011, 1140-1144.
  • [23] Wächter A., Biegler L.T., On the implementation of an interior-point filter line search algorithm for large-scale nonlinear programming, Math. Progr. Ser., 2005, 25-57.
  • [24] Godini H.R., Jašo S., Xiao S., Arellano-Garcia H., Omidkhah M., Wozny G., Methane Oxidative Coupling: Synthesis of Membrane Reactor Networks, Ind. Eng. Chem. Res., vol. 51(22), 2012, 7747-7761.
Uwagi
EN
The corresponding author is supported by CAPES, Coordination for the Improvement of Higher Education Personnel – Brazil (grant: 11946/13-0). Financial support from the Cluster of Excellence ‘Unifying Concepts in Catalysis’ (DFG EXC 314) is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a9fd5e8e-f5e8-43b9-9401-495e1892ae5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.