Warianty tytułu
Języki publikacji
Abstrakty
Conducted research determined the effect of the Trichoderma fungi on the presence of cadmium and lead ions in the soil contaminated by mentioned elements. The aim of the study was to demonstrate whether the fungi of this kind can contribute to remediation of soil by the immobilization of heavy metals. Experiments were conducted in laboratory conditions. The vaccine containing spores of Trichoderma asperellum was introduced into the soil contaminated with cadmium and lead by direct injection. Analyses of the soluble fraction of selected heavy metals were performed after 3 and 15 days of cultivation using atomic absorption spectrometry (AAS). Statistical significant positive effects on the immobilization of lead ions and no statistical differences in inhibition of cadmium translocation were observed. The results showed that Trichoderma fungi are suited to support the process of environment remediation by removal of lead. This suggests possible application of Trichoderma asperellum in mycoremediation and supporting role in phytoremediation of soil.
Czasopismo
Rocznik
Tom
Strony
277-286
Opis fizyczny
Bibliogr. 36 poz., fot., wykr.
Twórcy
autor
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 21 79 int. 148, kbandurska@hotmail.com
autor
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 21 79 int. 148
autor
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 21 79 int. 148
autor
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 21 79 int. 148
autor
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 21 79 int. 148
Bibliografia
- [1] Charlesworth S, De Miguel E, Ordóńez A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health. 2011;33:103-23. DOI: 10.1007/s10653-010-9325-7.
- [2] Cui Y, Zhu YG, Zhai R, Huang Y, Qiu Y, Liang J. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ Int. 2005;31(6):784-90. DOI: 10.1016/j.envint.2005.05.025.
- [3] Majer BJ, Tscherko D, Paschke A, Wennrich R, Kundi M, Kandeler E, et al. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res. 2002;515:111-24. DOI: 10.1016/s1383-5718(02)00004-9.
- [4] Pérez-de-Mora A, Madejón E, Burgos P, Cabrera F. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Sci Total Environ. 2006;363(1-3):28-37. DOI: 10.1016/j.scitotenv.2005.10.015.
- [5] Khalil M. Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against root rot caused by Fusarium solani in tomato. Egyptian J Agric Res. 2019;97:507-16. DOI: 10.21608/ejar.2019.151891.
- [6] Saba H, Vibhash D, Manisha M, Prashant KS, Farhan H, Tauseef A. Trichoderma - a promising plant growth stimulator and biocontrol agent. Mycosphere. 2012;3(4):524-31. DOI: 10.5943/mycosphere/3/4/14.
- [7] Wang L, Li X. Steering soil microbiome to enhance soil system resilience. Crit Rev Microbiol. 2019;45:5-6. DOI: 10.1080/1040841X.2019.1700906.
- [8] Ali EH, Hashem M. Removal efficiency of the heavy metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at different pH values and temperature degrees. Mycobiology. 2007;35(3):135-44. DOI: 10.4489/MYCO.2007.35.3.135.
- [9] Sahu A, Mandal A, Thakur J, Manna MC, Subba Rao A. Exploring bioaccumulation efficacy of Trichoderma viridae: An alternative bioremediation of cadmium and lead. Natl Acad Sci Lett. 2012;35(4):299-302. DOI: 10.1007/s40009-012-0056-4.
- [10] Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett. 2006;254(2):173-81. DOI: 10.1111/j.1574-6968.2005.00044.x.
- [11] Colpaert JV, Wevers JH, Krznaric E, Adriaensen K. How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals Forest Sci. 2011;68(1):17-24. DOI: 10.1007/s13595-010-0003-9.
- [12] Luo ZB, Chenhan Wu C, Zhang C, Li H, Lipka U, Polle A. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exper Bot. 2014;108:47-62. DOI: 10.1016/j.envexpbot.2013.10.018.
- [13] Schlunk I, Krause K, Wirth S, Kothe E. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res Int. 2015;22(24):19384-93. DOI: 10.1007/s11356-014-4044-8.
- [14] Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Botany. 2002;53:1351-1365. DOI: 10.1093/jexbot/53.372.1351.
- [15] Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 2007;182:83-90. DOI: 10.1007/s11270-006-9323-7.
- [16] Cabała J, Krupa P, Misz-Kennan M. Heavy metals in mycorrhizal rhizospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water Air Soil Pollut. 2009;199:139-49. DOI: 10.1007/s11270-008-9866-x.
- [17] Bano SA, Ashfaq D. Role of mycorrhiza to reduce heavy metal stress. Nat Sci. 2013;5(12A):16-20. DOI: 10.4236/ns.2013.512A003.
- [18] Bandurska K, Krupa P, Berdowska A, Marczak M. Adaptation of selected ectomycorrhizal fungi to increased concentration of cadmium and lead. Ecol Chem Eng S. 2016;23(3):483-91. DOI: 10.1515/eces-2016-0035.
- [19] Weindling R. Trichoderma lignorum as parasite of other soil fungi. Phytopathology. 1932;22:837-45.
- [20] Benìtez T, Rincòn AM, Limòn MC, Codòn AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7(4):249-60. Available from: https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf.
- [21] John RP, Tyagi RD, Prévost D, Brar SK, Pouleur S, Surampalli RY. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 2010;29(12):1452-9. DOI: 10.1016/j.cropro.2010.08.004.
- [22] Chetan K, Sandhya M, Sarma BK, Singh SP, Singh HB. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol. 2014;98:533-44. DOI: 10.1007/s00253-013-5344-5.
- [23] Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci. 2020;65(2):168-78. DOI: 10.1016/j.aoas.2020.09.003.
- [24] Alfano G, Lewis Ivey MLC, Cakir C, Bos JIB, Miller SA, Madden LV, et al. Systemic modulation of gene expression in tomato by Trichoderma hamatum. Phytopathology. 2007;97:429-37. DOI: 10.1094/PHYTO-97-4-0429.
- [25] Violante A, Cozzolino V, Perelomo L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268-92. DOI: 10.4067/S0718-95162010000100005.
- [26] Tchounwou P, Yedjou C, Patlolla A, Sutton D. Heavy metal toxicity and the environment. In: Luch A, editor. Molecular, Clinical and Environmental Toxicology. Experientia supplementum. Basel: Springer; 2012;101. DOI: 10.1007/978-3-7643-8340-4_6.
- [27] Tessier A, Cambell PG, Bisson M. Sequential extraction procedure for the speciation of particulate tracemetals. Anal Chem. 1979;51(7):844-51. DOI: 10.1021/ac50043a017.
- [28] Bień J, Chlebowska-Ojrzyńska M, Zabochnicka-Świątek M. Ekstrakcja sekwencyjna w osadach ściekowych (Sequential extraction in sewage sludge). Proc ECOpole. 2011;5(1):173-8. Available from: https://drive.google.com/drive/folders/1tpAJ9F051yIW0vm3j0S6hbzez4q31QeD.
- [29] Kawai M. Artifical ectomicorrhiza formation on roots of air-layered Pinus densiflora saplings by inoculaton with Lycophyllum shimeji. Mycologia. 1997;89(2):228-32. DOI: 10.2307/3761075.
- [30] Bandurska K, Krupa P, Berdowska A, Jatulewicz I. Use of saprophytic fungi specimens as a plant protection agents in tomatoe plantation. Ecol Eng. 2015;43:88-93. DOI: 10.12912/23920629/58908.
- [31] Polish Standard PN-ISO 10390:1997. Soil quality. Determination of pH. Polish Committee for Standardization, Warszawa. Available from: https://sklep.pkn.pl/pn-iso-10390-1997p.html.
- [32] Sastre J, Sahuquillo A, Vidal M, Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta. 2002; 462(1):59-72. DOI: 10.1016/S0003-2670(02)00307-0.
- [33] Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;6730305. DOI: 10.1155/2019/6730305.
- [34] Wang S, Wu Q-S, He X-H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015;61(2):66-71. DOI: 10.17221/833/2014-PSE.
- [35] Holda A, Kisielowska E. Biological removal of Cr(VI) ions from aqueous solutions by Trichoderma viride. Physicochem Probl Miner Process. 2013;49(1):47-60. DOI: 10.5277/ppmp130105.
- [36] Kacprzak M, Rosikoń K, Fijałkowski K, Grobelak A. The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci. 2014;506142. DOI: 10.1155/2014/506142.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a9ebd81f-1900-4130-b443-1454188ffec6