Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 437--451
Tytuł artykułu

Source term model for elasticity system with nonlinear dissipative term in a thin domain

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article establishes an asymptotic behavior for the elasticity systems with nonlinear source and dissipative terms in a three-dimensional thin domain, which generalizes some previous works. We consider the limit when the thickness tends to zero, and we prove that the limit solution u∗ is a solution of a two-dimensional boundary value problem with lower Tresca’s free-boundary conditions. Moreover, we obtain the weak Reynolds-type equation.
Wydawca

Rocznik
Strony
437--451
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics, Faculty of Science, University of Saad Dahlab-Blida 1, Blida, Algeria, mohamed77dilmi@gmail.com
  • Department of Mathematics, Applied Mathematics Laboratory, Faculty of Sciences, University of Ferhat ABBAS- Sétif 1, Sétif, 19000, Algeria, mouraddil@yahoo.fr
  • Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia, saleh_boulaares@yahoo.fr
  • Department of Mathematics, Applied Mathematics Laboratory, Faculty of Sciences, University of Ferhat ABBAS- Sétif 1, Sétif, 19000, Algeria, m_benseridi@yahoo.fr
Bibliografia
  • [1] A. Saadallah, H. Benseridi, M. Dilmi, and S. Drabla, Estimates for the asymptotic convergence of a nonisothermal linear elasticity with friction, Georgian Math. J. 23 (2016), no. 3, 435–446.
  • [2] G. Bayada and K. Lhalouani, Asymptotic and numerical analysis for unilateral contact problem with Coulomb’s friction between an elastic body and a thin elastic soft layer, Asymptot. Anal. 25 (2001), 329–362.
  • [3] S. Manaa, H. Benseridi, and M. Dilmi, 3D-2D asymptotic analysis of an interface problem with a dissipative term in a dynamic regime, Bol. Soc. Mat. Mex. 27 (2021), 10.
  • [4] J. C. Paumier, Le problème de Signorini dans la Théorie des plaques minces de Kirchhoff-Love, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 567–570.
  • [5] G. Bayada and M. Boukrouche, On a free boundary problem for Reynolds equation derived from the Stokes system with Tresca boundary conditions, J. Math. Anal. Appl. 382 (2003), 212–231.
  • [6] S. Gala, M. A. Ragusa, Y. Sawano, and H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, Appl. Anal. 93 (2014), no. 2, 356–368.
  • [7] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett. 25 (2012), no. 10, 1270–1273.
  • [8] A. Saadallah, H. Benseridi, and M. Dilmi, Asymptotic convergence of a generalized non-Newtonian fluid with Tresca boundary conditions, Acta. Math. Sci. 40 (2016), no. 3, 700–712.
  • [9] G. Duvaut and J. L. Lions, Les inéquations en mé canique des fluides, Dunod, 1969.
  • [10] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
  • [11] J. E. Lagnese, Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim. 21 (1983), 968–984.
  • [12] J. E. Lagnese, Uniform asymptotic energy estimates for solution of the equation of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. T. M. A. 16 (1991), 35–54.
  • [13] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form, Trans. Amer. Math. Soc. 192 (1974), 1–21.
  • [14] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138–146.
  • [15] M. Nakao, Energy decay for the wave equation with a nonlinear weak dissipation, Differ. Integral Equ. 8 (1995), no. 3, 681–688.
  • [16] M. Dilmi, M. Dilmi, and H. Benseridi, Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rend. Istit. Mat. Univ. Trieste 51 (2019), 41–60.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a9d4dedc-6a12-4833-a47c-bba20c6be29b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.