Warianty tytułu
EKG oparte na IoT: hybrydowe podejście cnn-bilstm do klasyfikacji zawałów mięśnia sercowego
Języki publikacji
Abstrakty
Cardiovascular disease such as ischemic heart disease and stroke are the most dangerous diseases in the WHO stats. Myocardial Infarction (MI), an ischemic disease of the heart, occurs due to a sudden blockage in the coronary arteries that supply blood to the heart causing a lack of oxygen and nutrients. The MI patient needs continuous monitoring using electrocardiography, the latter is always at risk of developing complications such as arrhythmias. As a solution, we proposed an internet of things (IoT) based ECG system for monitoring, the application layer was reserved for the detection of MI and arrhythmias using artificial intelligence so that the patients can keep being monitored even outside health facilities. For this purpose, this paper proposed a hybrid Convolutional Neural Network (CNN) – Bidirectional Long Short-Term Memory (BiLSTM) approach to classify ECG signals and evaluates its performance by using raw and preprocessed data, and comparing the results to related studies. Two datasets have been used in this classification. The results were promising, the model has scored 99.00% accuracy on raw data classifying 4 classes, and 99.73% accuracy on a larger preprocessed data for 3 classes classification. The proposed model is suitable to serve in our monitoring task.
Choroby układu krążenia, takie jak choroba niedokrwienna serca i udar mózgu, to najniebezpieczniejsze choroby według statystyk WHO. Zawał mięśnia sercowego (MI), choroba niedokrwienna serca, występuje w wyniku nagłego zablokowania tętnic wieńcowych dostarczających krew do serca, powodując brak tlenu i składników odżywczych. Pacjent po zawale serca wymaga ciągłego monitorowania za pomocą elektrokardiografii, gdyż zawsze istnieje ryzyko wystąpienia powikłań w postaci arytmii. Jako rozwiązanie zaproponowano system monitorowania EKG oparty na Internecie rzeczy (IoT), którego warstwa aplikacyjna została zarezerwowana do wykrywania zawału serca i arytmii z wykorzystaniem sztucznej inteligencji, dzięki czemu pacjenci mogą być monitorowani nawet poza placówkami służby zdrowia. W tym celu w artykule zaproponowano hybrydowe podejście oparte na konwolucyjnej sieci neuronowej (CNN) i dwukierunkowej długiej pamięci krótkotrwałej (BiLSTM) do klasyfikacji sygnałów EKG i oceny ich działania przy użyciu surowych i wstępnie przetworzonych danych oraz porównaniu wyników z powiązanymi badaniami. W tej klasyfikacji wykorzystano dwa zbiory danych. Wyniki były obiecujące, model uzyskał 99,00% dokładności w przypadku surowych danych klasyfikujących 4 klasy i 99,73% dokładności w przypadku większych, wstępnie przetworzonych danych w przypadku klasyfikacji 3 klasy. Zaproponowany model nadaje się do realizacji postawionego zadania monitorowania.
Rocznik
Tom
Strony
76--80
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Mohammed V University in Rabat, ENSAM Rabat, Electronic Systems Sensors and Nanobiotechnology Research Team, Rabat, Morocco, abdelmalek_makhir@um5.ac.ma
- Mohammed V University in Rabat, ENSAM Rabat, Electronic Systems Sensors and Nanobiotechnology Research Team, Rabat, Morocco, h.elyousfi@um5r.ac.ma
autor
- Mohammed V University in Rabat, ENSAM Rabat, Electronic Systems Sensors and Nanobiotechnology Research Team, Rabat, Morocco, l.bellarbi@um5r.ac.ma
autor
- Mohammed V University in Rabat, ENSAM Rabat, Electronic Systems Sensors and Nanobiotechnology Research Team, Rabat, Morocco, a_jilbab@yahoo.fr
Bibliografia
- [1] Acharya U. R. et al.: A deep convolutional neural network model to classify heartbeats. Computers in biology and medicine 89, 2017, 389–396.
- [2] Acharya U. R. et al.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences 415, 2017, 190–198.
- [3] ANSI/AAMI EC57. Association for the Advancement of Medical Instrumentation and Others, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms 1998 (1998).
- [4] Benjamin E. J. et al.: Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 139(10), 2019, e56-e528.
- [5] Bisong E.: Building machine learning and deep learning models on Google cloud platform. Apress, Berkeley 2019.
- [6] Bousseljot R., Kreiseler D., Schnabel A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet, 1995, 317–318.
- [7] Douzas G., Bacao F., Last F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information sciences 465, 2018, 1–20.
- [8] Fan X. et al.: A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals. Neural Computing and Applications 32(12), 2020, 8101–8113.
- [9] Gao J. et al.: An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. Journal of healthcare engineering 1, 2019, 6320651.
- [10] Goldberger A. L. et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 2000, e215-e220.
- [11] Guo L., Sim G., Matuszewski B.: Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybernetics and Biomedical Engineering 39(3), 2019, 868–879.
- [12] Guth J. et al.: Comparison of IoT platform architectures: A field study based on a reference architecture. Cloudification of the Internet of Things – CIoT. IEEE, 2016.
- [13] Kachuee M., Fazeli S., Sarrafzadeh M.: ECG heartbeat classification: A deep transferable representation. IEEE international conference on healthcare informatics – ICHI. IEEE, 2018.
- [14] Kiranyaz S., Ince T., Gabbouj M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE transactions on biomedical engineering 63(3), 2015, 664–675.
- [15] Hossin M., Sulaiman M. N.: A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process 5(2), 2015, 1.
- [16] Makhir A. et al.: Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models. International Journal of Online and Biomedical Engineering – iJOE 20(3), 2024, 2024, 154–165.
- [17] Mark R. G. et al.: An annotated ECG database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering 29(8), 1982.
- [18] Marti H. H., Risau W.: Angiogenesis in ischemic disease. Thrombosis and haemostasis 82(S 01), 1999, 44–52.
- [19] Moody G. B., Mark R. G.: The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine 20(3), 2001, 45–50.
- [20] Rautaharju P. M., Surawicz B., Gettes L. S.: AHA/ACCF/HRS recom-mendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 119(10), 2009, e241-e250.
- [21] Singh S. et al.: Classification of ECG arrhythmia using recurrent neural networks. Procedia Computer Science 132, 2018, 1290–1297.
- [22] Tan K. F., Chan K. L., Choi K.: Detection of the QRS complex, P wave and T wave in electrocardiogram. First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476). IET, 2000.
- [23] Wu M. et al.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Frontiers in computational neuroscience 14, 2021, 564015.
- [24] Yildirim Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Computers in biology and medicine 96, 2018, 189–202.
- [25] Zhao R. et al.: Machine health monitoring with LSTM networks. 10th International Conference on Sensing Technology – ICST. IEEE, 2016.
- [26] Nurmaini S. et al.: An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Applied sciences 9(14), 2019, 2921.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a91b1008-34cc-414f-84c9-ec14a0744ed2