Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 4 | 380--385
Tytuł artykułu

Sorbitol-Based Biodegradable Plastics from Rubberized Cassava Starch and Tofu Dregs Starch

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In daily life, the use of plastic is widespread, causing serious problems with plastic waste. Moreover, as the population continues to grow, the amount of waste will also increase. Therefore, immediate action is to switch from plastic made from petroleum, which is difficult to decompose, to plastic made from biodegradable materials. In this study, biodegradable plastic was made from rubberized cassava starch and tofu dregs with the addition of sorbitol as a plasticizer. This research aimed to determine the effect of the plasticizer composition of sorbitol, rubber cassava starch, and tofu dregs starch for making biodegradable plastics and to determine the characteristics of the plasticproducts.The production of biodegradable plastic using rubber cassava starch and tofu dregs starch added with sorbitol as a plasticizer was divided intothree stages, namely producing flour from rubberizedcassava starch and tofu dregs starch, making biodegradable plastic and analyzing biodegradable plastic samples. The best results from various sample analyses were a tensile strength value of 4291.9 kPa, an elongation percentage of 35%, a water absorption capacity of 41.94%, and a biodegradation test of±2 weeks had decomposed around 80% in the soil.
Wydawca

Rocznik
Strony
380--385
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Chemical Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Palembang, Indonesia, marhainiump@gmail.com
  • Chemical Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Palembang, Indonesia, dewifernianti@gmail.com
autor
  • Forestry Study Program Faculty of Agriculture Muhammadiyah University of Palembang, Indonesia
autor
  • Chemical Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Palembang, Indonesia
Bibliografia
  • 1. Abraham A., Park H., Choi O., Sang B.-I. 2021. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production–A review. Bioresource Technology, 322, 124537. https://doi.org/10.1016/j. biortech.2020.124537.
  • 2. Anjaly P. Thomas., Vara Prasad Kasa., Brajesh Kumar Dubey., Ramkrishna Sen., Ajit K. Sarmah.2023. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock.Science of the Total Environment, 904, 167243.
  • 3. Borrelle S.B., Ringma J., Law K.L., Monnahan C.C., Lebreton L., McGivern A., Murphy E., Jambeck, J., Leonard, G.H., Hilleary M.A., Eriksen M., Possingham H.P., De Frond H., Gerber L.R., Polidoro B., Tahir A., Bernard M., Mallos N., Barnes M., & Rochman C.M. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515–1518. https://doi. org/10.1126/science.aba3656
  • 4. Dinas Pertenakan Provinsi Jawa Timur, 2019. Pemanfaatan Ampas Tahu Sebagai Pakan Unggas. Dinas Pertenakan Provinsi Jawa TImur.
  • 5. Donhowe I.G. and dan Fennema O.R. 1993. Water vapour and oxygen permeability of wax film. J. Am Oil. Sci. 70(9), 867-873.
  • 6. Ghimire S., Flury M., Scheenstra E.J., Miles C.A. 2020. Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Science of The Total Environment, 703, 135577. https://doi.org/10.1016/j. scitotenv.2019.135577
  • 7. Grenby T.H., Parker K.J., Linoley M.G. 1994. Developments in Sweeteners 2. Applied Science. Publishing London.
  • 8. Karan H., Funk C., Grabert M., Oey M., Hankamer B. 201). Green bioplastics as part of a circular bioeconomy. Trends in Plant Science, 24(3), 237-249. https://doi.org/10.1016/j.tplants.2018.11.010
  • 9. Krisnadi Y., Handarni, Udyani K. 2019. Pengaruh Jenis Plasticizer Terhadap Karakteristik Plastik Biodegra dable dari Bekatul Padi. Seminar Nasional Sains dan Teknologi Terapan VII. Institut Teknologi Adhi Tama Surabaya.
  • 10. Nuriyah L., Saroja G., Ghufron, Razanata A., Rosid N.F. 2018. Karakteristik Kuat Tarik dan Elongasi Bioplastik Berbahan PatiUbi Jalar Cilembu dengan Variasi Jenis Pemlastis. Natural B, 4(4).
  • 11. Margaretha L. and Ratnawulan. 2020. The effect of addition sorbitol and carboxymethyl Cellulose (cmc) on the quality of biodegradable plastics from avocado seed starch. Pillar of Physics, 13(2), 2020, page. 103-112. http://dx.doi.org/10.24036/10463171074
  • 12. Marichelvam J. and Asim 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/ f ib7040032
  • 13. McHugh, T.H. and dan Krochta, J.M. 1994. Sorbitol and glycerol plasticed whey protein edible film: integrated oxygen permeability and tensite property evaluation. J. Agric. and Food Chem., 2:4, 841-845.
  • 14. Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., Abdul Ghani, A. 2022. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j. crgsc.2022.100273
  • 15. Pranamuda H. 2020. Pengembangan Bahan Plastik Biodegradable Berbahan Baku Pati Tropis.
  • 16. Putra A.D., Amri I., Irdoni. 2019. Sintesis Bioplastik Berbahan Dasar Pati Jagung dengan Penambahan Filler Selulosa Serat Daun Nanas (Ananas cosmosus)., Jom FTEK NIK. 6, 1-8.
  • 17. Rusli A., Metusalach S., Tahir M.M. 2017. Karakterisasi Edible Film Karagenan dengan Pemlastis Gliserol. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 219-229. https://doi.org/10.17844/ jphpi.v20i2.17499
  • 18. Selpiana P. and Anggraeni C.P. 2016. Pengaruh Penambahan Kitosan dan Gliserol pada Pembuatan Bioplastik dari Ampas Tebu dan Ampas Tahu. Jurnal Teknik Kimia, 22(1).
  • 19. Shimao M. 2001. Biodegradation of plastics. Current Opinion in Biotechnology, 12(3), 242–247. https://doi.org/10.1016/S0958-1669(00)00206-8
  • 20. Shlush E. and Davidovich-Pinhas M., 2022. Bioplastics for food packaging.Trends in food science & technology, 125, 66-80. https://doi.org/10.1016/j. tifs.2022.04.026
  • 21. Sitompul A.J.W.S. and Zubaidah E. 2017. Pengaruh jenis dan konsentrasi plasticizer terhadap sifat fisik Edible film kolang kaling (Arenga pinnata). Jurnal Pangan dan Agroindustri, 5(1), 13-25.
  • 22. Steven O. and Mardiyati Y. 2020. Cladophora algae selulosa dan biokomposit berbahan dasar pati sebagai alternatif bahan kemasan ramah lingkungan. AIP Conf. Proc., AIP Publishing LLC, 40006.
  • 23. Wahyuningtyas D., Sukmawati P.D., Al Fitria N.M. 2019. Optimasi Pembuatan Plastik Biodegradable dari Pati Kulit Singkong dengan Penambahan Asam Sitrat sebagai Crossling Agent. Seminar Nasional Teknik Kimia Kejuangan, p. 6.
  • 24. Weinstein J.E., Dekle J.L., Leads R.R., Hunter R.A. 2020. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Marine Pollution Bulletin, 160, 111518. https://doi. org/10.1016/j.marpolbul.2020.111518
  • 25. Winarno F. 2021. Gizi Pangan, Teknologi dan Konsumsi. Gramedia.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a8cb2098-4305-406e-a6b5-30bb3107afd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.