Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 44, nr 1 | 11--38
Tytuł artykułu

Convergence and decompositions for 1-group-valued set functions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absolute continuity, singularity and Lebesgue decompositions are studied, in the context of the so-called RD-convergence, for finitely and/or σ-additive measures taking values in super-Dedekind complete l-groups. By means of a Vitali-Hahn-Saks-Nikodým result, found in [4], we deduce a convergence theorem for the Lebesgue decompositions of an RD-convergent sequence of finitely additive measures.
Wydawca

Rocznik
Strony
11--38
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • [1] R. Bartle, The Elements of Integration, John Wiley & Sons, 1966.
  • [2] A. Boccuto, On Stone-type extensions for group-valued measures, Math. Slov. 45 (1995), 309-315.
  • [3] A. Boccuto, Vitali-Hahn-Saks and Nikodym theorems for means with values in Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157-173.
  • [4] A. Boccuto and D. Candeloro, Uniform s-boundedness and convergence results for measures with values in complete l-groups, J. Math. Anal. Appl. 265 (2002), 170-194.
  • [5] J. K. Brooks, On the Vitali-Hahn-Saks and Nikodym theorems, Proc. Nat. Acad. Sci. U.S.A. 64 (1969), 468-471.
  • [6] D. Candeloro, Uniforme esaustivita e assoluta continuita, Boll. Un. Mat. Ital. 4-B (1985), 709-724.
  • [7] D. Candeloro, Convergence theorems for measures with values in Riesz spaces, Kybernetika, 38 (2002), 287-295.
  • [8] D. Candeloro and G. Letta, Sui teoremi di Vitali-Hahn-Saks e di Dieudonne, Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203-213.
  • [9] M. Congost Iglesias, Medidas y probabilidades en estructuras ordenadas, Stochastica 5 (1981), 45-48.
  • [10] P. de Lucia and P. Morales, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym convergence theorems for uniform semigroup-valued additive functions on a Boolean ring, Ricerche Mat. 35 (1986), 75-87.
  • [11] M. Duchoň and B. Riečan, On the Kurzweil-Stieltjes integral in ordered spaces, Tatra Mountains Math. Publ. 8 (1996), 133-141.
  • [12] B. T. Faires, On Vitali-Hahn-Saks-Nikodym type theorems, Ann. Inst. Fourier 26 (1976), 99-114.
  • [13] W. Orlicz and R. Urbański, A generalization of the Brooks-Jewett theorem, Bull. Acad. Pol. Sci, Ser. Sci. Math. 28 (1980), 55-59.
  • [14] E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers/Ister Science, Bratislava, 1995.
  • [15] B. Riečan and T. Neubrunn, Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, Bratislava, 1997.
  • [16] K. Schmidt, Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc., 29 (1986), 23-39.
  • [17] R. Sikorski, Boolean Algebras, Springer/Verlag, Berlin, 1964.
  • [18] C. Swartz, The Nikodym boundedness Theorem for lattice-valued measures, Arch. Math. 53 (1989), 390-393.
  • [19] T. Traynor, The Lebesgue decomposition for group-valued set functions, Trans. Amer. Math. Soc. 220 (1976), 307-319.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a890280d-76d5-46a0-96cd-44e9256fffa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.