Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | T. 18, z. 4 | 161--174
Tytuł artykułu

Determination of a torsional vibration viscous damper’s operating temperature using a new thermohydrodynamic model

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an innovative algorithm and mathematical model of a torsional vibration viscous damper. The problem of torsional vibrations damping in a multicylinder internal combustion engine is extremely important for the reliable operation of a drive unit. The effective reduction of the vibration amplitude extends the service life and prevents failures that generate logistic and transport problems. One of the key parameters used to assess the quality of vibration damper operation is the temperature. This criterion is so important that it is the main indicator for the possible replacement of dampers installed in trucks, locomotives, and ships. Despite the importance of this parameter, the literature lacks mathematical models that describe the thermodynamics of damper operation. Therefore, the authors of this paper developed and presented an innovative thermohydrodynamic model of a torsional vibrations viscous damper, which was used to determine the operating parameters.
Wydawca

Czasopismo
Rocznik
Strony
161--174
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Powstancow Warszawy 12, 35-959 Rzeszow, Poland, whomik@prz.edu.pl
  • Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Powstancow Warszawy 12, 35-959 Rzeszow, Poland, almaz@prz.edu.pl
  • Rzeszow University of Technology, The Faculty of Mechanics and Technology, Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland, achmie@prz.edu.pl
Bibliografia
  • 1. Atzori, B. & Berto, F. & Lazzarin, P. & Quaresimin, M. A stress invariant based criterion to estimate fatigue damage under multiaxial loading. International Journal of Fatigue. 2006. Vol. 28. P. 485-493.
  • 2. Czarnigowski, J. & Drozdziel, P. & Kordos, P. Characteristic rotational speed ranges of a crankshaft during combustion engine operation at car maintenance. Eksploatacjai Niezawodność - Maintenance and Reliability. 2002. Vol. 2. No. 14. P. 55-62.
  • 3. Becarra, J. & Jimenez, F. & Torrez, M. & Sanchez, D. & Carvajal, E. Failure analysis of reciprocating compressor crankshafts. Engineering Failure Analysis. 2011. Vol. 18. No. 2. P. 735-746.
  • 4. Asi, O. Failure analysis of a crankshaft made from ductile cast iron. Engineering Failure Analysis. 2005. Vol. 13. No. 8. P. 1260-1267.
  • 5. Alfares, M. & Falah, A. & Elkholy, A. Failure analysis of a vehicle engine crankshaft. Journal of Failure Analysis and Prevention. 2007. Vol. 7. No. 1. P. 12-17.
  • 6. Bahumik, S. & Rangaraju, R. & Venkataswamy, M. & Baskaran, T. & Parameswara, M. Fatigue fracture of crankshaft of an aircraft engine. Engineering Failure Analysis. 2002. Vol. 9. No. 3. P. 255-263.
  • 7. Changli, C. & Chengjie, Z. & Deping, W. Analysis of an unusual crankshaft failure. Engineering Failure Analysis. 2005. Vol. 12. No. 3. P. 465-473.
  • 8. Fonte, M. & Li, B. & Reis, L. & Freitas, M. Crankshaft failure analysis of a motor vehicle. Engineering Failure Analysis. 2013. Vol. 35. P. 147-152.
  • 9. Pandey, R. Failure of diesel engine crankshaft. Engineering Failure Analysis. 2003. Vol. 10. No. 2. P. 165-175.
  • 10. Chen, X. & Yu, X. & Hu, R. & Li, J. Statistical distribution of crankshaft fatigue: Experiment and modelling. Engineering Failure Analysis. 2014. Vol. 4. P. 210-220.
  • 11. Bue, L. & Stefano, A. & Giagonia, C. & Pipitone, E. Misfire Detection System based on the Measure of Crankshaft Angular Velocity. In: Advanced Microsystems for Automotive Applications 2007. Berlin, Heidelberg: Springer. 2007. P. 149-161.
  • 12. Drozdziel, P. & Krzywonos, L. The estimation of the reliability of the first daily diesel engine start- up during its operation in the vehicle. Eksploatacjai Niezawodność - Maintenance and Reliability. 2009. Vol. 1. No. 41. P. 4-10.
  • 13. Jung, D. & Kim, H. & Pyoun, Y. & Gafurov, A. & Choi, G. & Ahn, J. Reliability prediction of the fatigue life of a crankshaft. Journal of Mechanical Science and Technology. 2009. Vol. 23. P. 1071-1074.
  • 14. Orczyk, M. & Tomaszewski, F. Diagnostic and reliability model of an internal combustion engine. Combustion Engines. 2020. Vol. 180. No. 1. P. 41-46.
  • 15. Singh, S. & Abdullah, S. & Mohamed, N. Reliability analysis and prediction for time to failure distribution of an automobile crankshaft. Eksploatacjai Niezawodność - Maintenance and Reliability. 2015. Vol. 17. No. 3. P. 408-415.
  • 16. Deuszkiewicz, P. & Pankiewicz, J. & Dziurdz, J. & Zawisza, M. Modeling of powertrain system dynamic behavior with torsional vibration damper. Advanced Materials Research. 2014. Vol. 1036. P. 586-591.
  • 17. Kodama, T. & Honda, Y. Study on the Modeling and Dynamic Characteristics of the Viscous Damper Silicone Fluid Using Vibration Control of Engine Crankshaft Systems. International Journal of Mechanical Engineering and Robotics Research. 2018. Vol. 7. No. 3. P. 273-278.
  • 18. Wilson, W. Practical solution of torsional vibration problems. New York: Springer. 1969.
  • 19. Senjanović, I. & Hadžić, N. & Murawski, L. & Vladimir, N. & Alujević, N. & Cho, D.-S. Analytical procedures for torsional vibration analysis of ship power transmission system. Engineering Structures. 2019. Vol. 178. P. 227-244.
  • 20. Mollenhauer, K. & Tschöke, H. Handbook of diesel engines. Berlin: Springer. 2010.
  • 21. Nestorides, E. A handbook on torsional vibration. Cambridge: Cambridge University Press. 1958.
  • 22. Homik, W. & Markowski, T. Temperature as a source of information about the technical condition viscous torsion damper. Solid State Phenomena. 2015. Vol. 236. P. 78-84.
  • 23. Lakshminarayanan, P. & Agraval, A. Design and development of heavy duty diesel engines: a handbook. Singapore: Springer. 2020.
  • 24. Latarche, M. Pounder’s Marine Diesel Engines and Gas Turbines. Cambridge: Butterworth-Heinemann. 2021.
  • 25. Wilbur, C. & Wight, D. Pounder’s Marine Diesel Engines. Thetford, Norfolk: Butterworth. 1984.
  • 26. Chmielowiec, A. & Michajłyszyn, A. & Homik, W. Behaviour of a torsional vibration viscous damper in the event of a damper fluid shortage. Polish Maritime Research. 2023. Vol. 30. No. 2. P. 105-113.
  • 27. Homik, W. & Mazurkow, A. & Woś, P. Application of a thermo-hydrodynamic model of a viscous torsional vibration damper to determining its operating temperature in a steady state. Materials. 2021. Vol. 14. No. 18. Paper No. 5234. 14 p.
  • 28. Zygmuntowicz, J. The development of the torsional vibration calculations program applied in H.Cegielski Company. In: Proceedings of 23rd CIMAC Congress. Hamburg. 2001. P. 9c-02.
  • 29. DIN 31652. Plain bearings - Hydrodynamic plain journal bearings under steady-state conditions. Deutsches Institut fur Normung. 2017.
  • 30. Barwell, F. Bearing Systems: Principles and Practice. Oxford: Oxford University Press. 1980.
  • 31. Barwell, F. Theories of wear and their significance for engineering practice. Treatise on Materials Science & Technology. 1979. Vol. 13. P. 1-83.
  • 32. Hori, Y. Hydrodynamic Lubrication. Tokyo: Springer-Verlag. 2006.
  • 33. Kaniewski, W. Warunki brzegowe diatermicznego filmu smarnego. Zeszyty naukowe Politechniki Łódzkiej Zeszyt specjalny. 1977. Vol. 14(281). P. 7-22. [In Polish: Kaniewski, W. Boundary conditions of a diathermic lubricating film. Scientific notebooks of the Lodz University of Technology. Special notebook.]
  • 34. Lund, J. Review of the concept of dynamic coefficients for fluid film journal bearings. Journal of Tribology. 1987. Vol. 109. P. 37-41.
  • 35. Clearco Products Co. Inc. Available at: http://www.clearcoproducts.com.
  • 36. Chmielowiec, A. & Woś, W. & Gumieniak, J. Viscosity approximation of PDMS using Weibull function. Materials. 2021. Vol. 14. No. 6060. 21 p.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a86a3e3f-4584-4289-9204-f84e85e2fd4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.