Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Tom 26 | 94--105
Tytuł artykułu

Emissions of Gases and Dust into the Air as a Result of the Conversion of Landfill Gas into Electricity and Heat in a Cogeneration Plant

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consequence of landfilling is biogas production in the waste bed, the main parameter of which is methane. The capture of biogas and its energetic use in a cogeneration system is the optimal solution for both environmental and energetic aspects. Nevertheless, the emission of gases and dust into the air from the cogeneration plant as a result of the combustion of biogas poses a potential threat not only to the surrounding ecosystem but also poses a serious risk to human health, especially to the respiratory system, leading to a variety of diseases. The gas and dust emission tests performed in the study showed significant values for CO2 173.08 [kg ∙ h-1] and for CO 0.7545 [kg ∙ -1-1], NO2 0.7129 [kg ∙ h-1], SO2 0.3958 [kg ∙ h-1] and total dust 0.0013 [kg ∙ h-1] respectively. The work aims to demonstrate the actual emissions of gases and dust into the air as a result of the combustion of landfill gas and to use them to calculate fees for the use of the environment. Since no emission standards have been defined for this type of installation and there is no need to use reducing devices, it is crucial to regularly monitor pollutant emissions by installation operators to optimize the biogas combustion process and reduce emissions. Replacing the reference values with measurement data regarding air emissions will make the actual impact of the cogeneration installation on the environment more realistic.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
94--105
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Poland
  • Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Poland , ebasta@ans-ns.edu.pl
Bibliografia
  • Abdel-Shafy, H. Mansour, M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleu, 27(4), 1275-1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  • Alwaeli , M. (2015). An over view of municipal solid waste management in Poland. The current situation, problems and challenges. Environment Protection Engineering, 41(4), https://doi.org/181-193. 10.5277/epel50414
  • Babenko, D.A., Pashkevich, M.A., Alekseenko, A.V. (2020). Water Quality Management at the Tailings Storage Facility of the Gaisky Mining and Processing Plant. Rocznik Ochrona Środowiska, 22, 214-225.
  • Bajdur, W., Zielińska, A., Gronba-Chyła, A. (2023). Product Life Cycle Assessment (LCA) as a Tool for Environmental Management. Rocznik Ochrona Środowiska, 25, 389-398. https://doi.org/10.54740/ros.2023.040
  • Balcerzak, W., Generowicz, A., Mucha, Z. (2014). Application of a multi-criteria analysis for selection of a method of reclamation method of a hazardous waste landfill. Polish Journal of Environmental Studies, 23(3), 983-987.
  • Barbera, E., Menegon, S., Banzato, D., D'Alpaos, C., Bertucco, A. (2019). From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context. Renew. Energy, 135, 663-673. https://doi.org/10.1016/j.renene.2018.12.052
  • Barros, R., Filho, G., Santos, A., Ferreira, C., Pieroni, M., Moura, J., Freitas, J. (2018). A potential of the biogas generating and energy recovering from municipal solid waste. Renewable Energy Focus, 25, 4-16. https://doi.org/10.1016/j.ref.2018.02.001
  • Beylot, A., Villeneuve, J., Bellenfant, G. (2013). Life Cycle Assessment of landfill biogas management: Sensitivity to diffuse and combustion air emissions. Waste Management, 33(2), 401-411. https://doi.org/10.1016/j.wasman.2012.08.017
  • Bragança, I., Sánchez-Soberón, F., Pantuzza, G., Alves, A., Ratola, N. (2020). Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies. Biomass and Bioenergy, 143, 105878. https://doi.org/10.1016/j.biombioe.2020.105878
  • Ciuła, J., Gaska, K., Siedlarz D., Koval V. (2019). Management of sewage sludge energy use with the application of bifunctional bioreactor as an element of pure production in industry. E3S Web of Conferences, 123, 01016. https://doi.org/10.1051/e3sconf/201912301016
  • Ciuła, J., Kowalski, S., Wiewiórska, I. (2023a) Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. Journal of Ecological Engineering, 24(3), 232-245. https://doi.org/10.12911/22998993/158562
  • Ciuła, J., Wiewiórska, I., Banaś, M., Pająk, T., Szewczyk, P. (2023b). Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies, 16, 3910. https://doi.org/10.3390/en16093910
  • Ciupek, B., Urbaniak, R., Bartoszewicz, J. (2018). Concept of biogas energy plant for large landfills. Rynek Energii, 6(55-59). (in polish). https://www.cire.pl/pliki/2/2019/09_ciupek_urbaniak_bartoszewicz.pdf [accessed 6 October 2023]
  • de Souza Ribeiro, N., Barros, R.M., Silva dos Santos, I.F., Filho, G.L.T., Galdino da Silva, S.P. (2012). Electric energy generation from biogas derived from municipal solid waste using two systems: landfills and an aerobic digesters in the states of São Paulo and Minas Gerais, Brazil. Sust. Ener. Techn. and Assess., 48, 101552. https://doi.org/10.1016/j.seta.2021.101552
  • Delgado, M., López, A., Esteban-García, A., Lobo, A. (2023). The importance of particularising the model to estimate landfill GHG emissions. J Environ Manage, 3259(B), 116600. https://doi.org/10.1016/j.jenvman.2022.116600
  • Ebreo, A., Vining, J. (2001). How Similar are Recycling and Waste Reduction? Future Orientation and Reasons for Reducing Waste As Predictors of Self-Reported Behavior. Environment and Behavior, 33(3), 424-448. https://doi.org/10.1177/0013916012197
  • Frąckowiak, S. (2023). Sustainable Approaches to Plastics. Rocznik Ochrona Środowiska, 25, 128-140. https://doi.org/10.54740/ros.2023.013
  • Gaska K., Generowicz A., Lobur M., Jaworski N., Ciuła J., Vovk M. (2019). Advanced algorithmic model for poly-optimization of biomass fuel production from separate combustible fractions of municipal wastes as a progress in improving energy efficiency of waste utilization. E3S Web of Conferences, 122, 01004. https://doi.org/10.1051/e3sconf/201912201004
  • Gaska, K., Generowicz, A., Lobur, M., Jaworski, N., Ciuła, J., Mzyk, T. (2019). Optimization of Biological Wastewater Treatment Process by Hierarchical Adaptive Control, IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design, 119-122. https://doi.ogr/10.1109/MEMSTECH.2019.8817382
  • Generowicz, A., Gronba-Chyła, A., Kulczycka, J., Harazin, P., Gaska, K., Ciuła, J., Ocłoń, P. (2023). Life Cycle Assessment for the environmental impact assessment of a city' cleaning system. The case of Cracow (Poland). Journal of Cleaner Production, 382, 135184. https://doi.org/10.1016/j.jclepro.2022.135184
  • Generowicz, N., Kulczycka, J. (2020). Recovery of Tantalum from Different Resources. Arch Civil Eng Environ., 13, 79-84. https://doi.org/10.21307/acee-2020-031
  • Gładka, A., Zatoński, T. (2016). Impact of air pollution on respiratory diseases. Kosmos, 65(4), 573-582. (in polish). http://kosmos.icm.edu.pl/PDF/2016/573-ang.pdf
  • Gorre, J., Ortloff, F., van Leeuwen, C. (2019). Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. Appl. Energy, 253, 113594. https://doi.org/10.1016/j.apenergy.2019.113594
  • Jara-Samaniego, J., Pérez-Murcia. M.D., Bustamante, M.A., Pérez-Espinosa, A., Paredes, C., López, M., López-Lluch, D.B., Gavilanes-Terán, I., Moral, R. (2017). Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. of Clean. Prod., 141, 1349-1358. https://doi.org/10.1016/j.jclepro.2016.09.178
  • Knutel, B., Gaze, B., Zając, K., Góraj, S., Bukowski, P. (2022). Multifaceted Analysis of Landfill Gas Use for Energy Purposes. Energies, 15, 8590. https://doi.org/10.3390/en15228590
  • Kowalski, Z., Generowicz, A., Makara, A. (2012). Evaluation of municipal waste disposal technologies by BATNEEC. Przemysł Chemiczny, 91(5), 811-815.
  • Kowalski, S., Opoka, K., Ciuła, J. (2022). Analysis of the end-of-life the front suspension beam of a vehicle. Maintenance and Reliability, 24(3), 446-454, http://doi.org/10.17531/ein.2022.3.6
  • Kowalski, Z., Kulczycka, J., Banach, M., Makara, A. (2023). A Complex Circular-Economy Quality Indicator for Assessing Production Systems at the Micro Level. Sustainability, 15, 13495. https://doi.org/10.3390/su151813495
  • Krause, M., Detwiler, N., Eades, W., Marro, D., Schwarber, A., Tolaymat, T. (2023). Understanding landfill gas behavior at elevated temperature landfills. Waste Management, 163, 83-93. https://doi.org/10.1016/j.wasman.2023.04.023
  • Lombardi , L., Carnevale, E., Corti, A. (2006). Greenhouse effect reduction and energy recovery from waste landfill. Energy, 31(15), 3208-3219. https://doi.org/10.1016/j.energy.2006.03.034
  • López, M.E., Rene, E.R., Veiga, M.C., Kennes, C. (2012). Biogas Technologies and Cleaning Techniques. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_9
  • Nanda, S., Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19, 1433-1456. https://doi.org/10.1007/s10311-020-01100-y
  • Niskanen, A., Värri, H., Havukainen, J., Uusitalo, V., Horttanainen, M. (2013). Enhancing landfill gas recovery. Journal of Cleaner Production, 55, 67-71. https://doi.org/10.1016/j.jclepro.2012.05.042
  • Nyamukamba, P., Mukumba, P., Chikukwa, E., Makaka, G. (2020). Biogas Upgrading Approaches with Special Focus on Siloxane Removal-A Review. Energies, 13(22), 6088. https://doi.org/10.3390/en13226088
  • Paolini, V., Petracchini, F., Segreto, M., Tomasse, L. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health, 53(10), 899-906. https://doi.org/10.1080/10934529.2018.1459076
  • Pereira Nascimento, D., Menezes, V.L., Carvalho, M., Chacartegui, R. (2019). Energy analysis of products and processes in a sanitary landfill. IET Renewable Power Generation, 13, 1063-1075. https://doi.org/10.1049/ietrpg.2018.5777
  • Polish Standard PN-EN 13284-1:2018-02 Stationary source emissions – Determination of low range mass concentration of dust – Part 1: Manual gravimetric method
  • Polish Standard PN-EN 14789:2017-04 Stationary source emissions – Determination of volume concentration of oxygen – Standard reference method: Paramagnetism
  • Polish Standard PN-EN 14792:2017 Stationary source emissions – Determination of mass concentration of nitrogenoxides – Standard reference method: chemiluminescence
  • Polish Standard PN-EN 15058:2006 Stationary source emissions – Determination of the mass concentration of carbon monoxide (CO) – Reference method: Non-dispersive infrared spectrometry
  • Polish Standard PN-ISO 10396:2007 Stationary source emissions – Sampling for the automated determination of gas emission concentrations for permanently-installed monitoring systems
  • Przydatek, G., Basta, E. (2019). Systemic Efficiency Assessment of Municipal Solid Waste Management in the Suburban Municipality. E3S Web of Conferences, 154, 03001. https://doi.org/10.1051/e3sconf/202015403001
  • Qin, W., Egolfopoulos, F.,Tsotsis, T. (2001). Fundamental and environmental aspects of landfill gas utilization for power generation. Chemical Engineering Journal, 82(1-3), 57-172. https://doi.org/10.1016/S1385-8947(00)00366-1
  • Pandey, S.K., Singh, J. (2021). Chapter 22 – Nitrogen dioxide: Risk assessment, environmental, and health hazard. Hazardous Gases Risk Assessment on the Environment and Human Health, 273-288. https://doi.org/10.1016/B978-0-323-89857-7.00001-3
  • Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003
  • Rajaram, V., Siddiqui, F.Z., &Emran Khan, M. (2011). From Landfill Gas to Energy: Technologies and Challenges (1st ed.). CRC Press. https://doi.org/10.1201/b11598
  • Regulation of the Minister of Climate and Environment of December 11, 2020 on assessing levels of substances in the air (Dz.U. 2020 poz. 2279 z póz. zm.). (in polish), https://isap.sejm.gov.pl/isap, [accessed 5 January 2024]
  • Regulation of the Minister of the Climate of September 24, 2020 on emission standards for certain types of installations, fuel combustion sources and waste incineration or co-incineration equipment (Dz.U. 2020, poz. 1860). https://isap.sejm.gov.pl/isap. (in polish). [accessed on 6 January 2024]
  • Scheutz, C., Kjeldsen, P. (2019). Guidelines for landfill gas emission monitoring using the tracer gas dispersionmethod. Waste Management, 85(15), 351-360. https://doi.org/10.1016/j.wasman.2018.12.048
  • Sharma, S., Jain, S., Khirwadkar, P. i Kulkarni, S. (2013). The effects of airpollution on the enviroment and humanhealth. Indian Journal of Research in Pharmacy and Biotechnology, 1(3), 391-396. https://www.ijrpb.com/issues/Volume%201_Issue%203/ijrpb%201(3)%2020%20page%20391-396.pdf. [accessed 16 October 2023]
  • Singh, A., Agrawal, M. (2008). Acidrain and its ecological consequences. Journal of Environmental Biology, 29(1), 15-24. https://www.jeb.co.in/journal_issues/200801_jan08/paper_02.pdf. [accessed 11 November 2023]
  • Slack, R., Gronow, J., Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of The Total Environment, 33(1-3), 119-137. https://doi.org/10.1016/j.scitotenv.2004.07.002
  • Sokka, L., Antikainen, R., Kauppi, P. (2007). Municipal solid waste production and composition in Finland – Changes in the period 1960-2002 and prospects until 2020. Resources, Conservation and Recycling, 50(4), 475-488. https://doi.org/10.1016/j.resconrec.2007.01.011
  • Stanuch, I., Sozańska, M., Biegańska, J., Cebula, J., Nowak, J. (2020). Fluctuations of the elemental composition in the layers of mineral deposits formed on the elements of biogas engines. Sci. Rep., 10, 4244. https://doi.org/10.1038/s41598-020-61212-x
  • Sun, Q., Li, H., Yan, J.,Liu, L., Yu, Z., Yu. X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilization. Renew. Sustain. Energy Rev., 15, 521-532. https://doi.org/10.1016/j.rser.2015.06.029
  • Un, C. (2023). A Sustainable Approach to the Conversion of Waste into Energy: Landfill Gas-to-Fuel Technology. Sustainability, 15(20), 14782. https://doi.org/10.3390/su152014782
  • Vaverková, M., Maxianová, A., Winkler, J., Adamcová, D., Podlasek, A. (2019). Environmental consequences and the role of illegal waste dumps and their impact on land degradation. Land Use Policy, 89, 104234. https://doi.org/10.1016/j.landusepol.2019.104234
  • Vaverkova, M. (2019). Landfill Impacts on the Environment-Review. Journals Geosciences, 9(10), 431. https://doi.org/10.3390/geosciences9100431
  • Verma, R.L., Borongan, G. (2022). Emissions of Greenhouse Gases from Municipal Solid Waste Management System in Ho Chi Minh City of Viet Nam. Urban Science, 6(4), 78. https://doi.org/10.3390/urbansci6040078
  • Wałowski, G. (2012). Assessment of the flow of substrate and agricultural biogas through the adhesive skeleton bed in phenomenological and numerical terms. Arch Thermodyn., 42(3), 243-253. https://doi.org/10.24425/ather.2020.138118
  • Weitz, K., Thorneloe, S., Nishtal, S., Yarkosky, S., Zannes, M. (2011). The Impact of Municipal Solid Waste Management on Greenhouse Gas Emissions in the United States. Journal of the Air & Waste Management Association, 52(9), 1000-1011. https://doi.org/10.1080/10473289.2002.10470843
  • Willumsen, H. (1990). Landfill gas. Resources, Conservation and Recycling, 4(1-2), 121-133. https://doi.org/10.1016/0921-3449(90)90037-5
  • Winslow, K.M., Laux, S.J., Townsend, T.G. (2019). An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations. Resources, Conservation and Recycling, 142, 155-166. https://doi.org/10.1016/j. resconrec.2018.11.021
  • Wysowska, E., Kicińska. A. (2021). Assessment of health risks with water consumption in terms of content of selected organic xenobiotics. Desalination and Water Treatment, 234, 1-14, https://doi.org/10.5004/dwt.2021.27720
  • Wysowska, E., Wiewiórska, I., Kicińska, A. (2022). Minerals in tap water and bottled waters and their impact on human health. Desalination and Water Treatment, 259, 133-151. https://doi.org/10.5004/dwt.2022.28437
  • Xiaoli, C., Tonjes, D., Mahajan, D. (2016). Methane emissions as energy reservoir: Context, scope, causes and mitigation strategies. Progress in Energy and Combustion Science, 56, 33-70. https://doi.org/10.1016/j.pecs.2016.05.001
  • Xu, L., Sun, F., Han, X. (2022). Assessment of Treatment Effect of Heavy Metal Pollution from Sewage Sludge in Wastewater Treatment Plant Discharge in China's Nanjing MV Industrial Park. Rocznik Ochrona Środowiska, 24, 276-293. https://doi.org/10.54740/ros.2022.020
  • Yadava, R.N., Bhatt, V. (2021). Chapter 8 – Carbon monoxide: Risk assessment, environmental, and health hazard. Hazardous Gases Risk Assessment on the Environment and Human Health, (83-96). https://doi.org/10.1016/B978-0-323-89857-7.00030-X
  • Zając, P., Poznański, J. (2021). Management Model Improving Environmental Protection. Rocznik Ochrona Środowiska, 23, 384-407. https://doi.org/10.54740/ros.2021.026
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a8488d1b-b914-4806-94d5-4af63d625222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.