Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, no. 2 | art. no. 184232
Tytuł artykułu

Experimental study and modeling of an air-cooled proton exchange membrane fuel cell stack in the static and dynamic performance

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research on Proton Exchange Membrane fuel cells is an important area in the field of modern energy sources. Such fuel cells are characterized by high efficiency and fast response times, making them a promising solution for sustainable energy production. Fuel cells operate under both static and dynamic conditions. Such varying operating conditions result in achieving different efficiency of fuel cell systems. This study attempts an experimental and modeled efficiency evaluation of a 1.2 kW open-cathode air-cooled fuel cell stack under static and dynamic conditions. A Sankey energy balance and an analysis of the balance components were determined for the fuel cell stack operating in these two operating states. Simultaneous modeling of the fuel cell under both static and dynamic conditions was carried out. The efficiency values of the fuel cell stack were found to be slightly higher under static conditions than under dynamic conditions. Modeling fuel cells in static and dynamic conditions results in slightly different parameters (better conformance was obtained for static models).
Wydawca

Rocznik
Strony
art. no. 184232
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • 1. Wee J-H. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews. 2007;11(8):1720-1738. https://doi.org/10.1016/j.rser.2006.01.005
  • 2. Di Giorgio P, Di Ilio G, Scarpati G, Erme G, Simeoni E, Jannelli E. Design of a hydrogen-powered bicycle for sustainable mobility. E3S Web of Conferences. 2022;334:06012. https://doi.org/10.1051/e3sconf/202233406012
  • 3. Boukoberine MN, Zia MF, Benbouzid M, Zhou Z, Donateo T. Hybrid fuel cell powered drones energy management strategy improvement and hydrogen saving using real flight test data. Energy Conversion and Management. 2021;236:113987. https://doi.org/10.1016/j.enconman.2021.113987
  • 4. Miller AR, Hess KS, Barnes DL, Erickson TL. System design of a large fuel cell hybrid locomotive. Journal of Power Sources. 2007;173(2):935-942. https://doi.org/10.1016/j.jpowsour.2007.08.045
  • 5. Switch. Sea Change. July 2023. Retrieved from, https://www.switchmaritime.com/projects
  • 6. Fuel cell combined heat & power (CHP) system/stationary fuel cell power generator. July 2023. Retrieved from, https://en.huadehydrogen.com/Pure-Hydrogen-Fuel-Cell-CHP-System-pl3811699.html
  • 7. Hoeflinger J, Hofmann P. Air mass flow and pressure optimisation of a PEM fuel cell range extender system. International Journal of Hydrogen Energy. 2020;45(53):29246-29258. https://doi.org/10.1016/j.ijhydene.2020.07.176
  • 8. Sveshnikova A, Marcoberardino GD, Pirrone C, Bischi A, Valenti G, Ustinov A, Campanari S. The impact of humidification temperature on a 1 kW proton exchange membrane fuel cell stack. Energy Procedia. 2017;142:1661-1667. https://doi.org/10.1016/j.egypro.2017.12.546
  • 9. Loskutov A, Kurkin A, Shalukho A, Lipuzhin I, Bedretdinov R. Investigation of PEM fuel cell characteristics in steady and dynamic operation modes. Energies. 2022;15:6863. https://doi.org/10.3390/en15196863
  • 10. Yang Y, Jia H, Liu Z, Bai N, Zhang X, Cao T, Zhang J, Zhao P, He X. Overall and local effects of operating parameters on water management and performance of open-cathode PEM fuel cells. Applied Energy. 2022;315:118978. https://doi.org/10.1016/j.apenergy.2022.118978
  • 11. Yan Q, Toghiani H, Causey H. Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. Journal of Power Sources. 2006;161(1):492-502. https://doi.org/10.1016/j.jpowsour.2006.03.077
  • 12. Cieśliński J, Kaczmarczyk T, Dawidowicz B. Dynamic characteristics of the proton exchange membrane fuel cell module. Archivesof Thermodynamics. 2018;39(4):125-140. https://doi.org/10.1515/aoter-2018-0033
  • 13. Chandran M, Palaniswamy K, Karthik Babu NB, Das O. A study of the influence of current ramp rate on the performance of polymer electrolyte membrane fuel cell. Sci Rep. 2022;12:21888. https://doi.org/10.1038/s41598-022-25037-0
  • 14. Huang Z, Shen J, Chan SH, Tu Z. Transient response of performance in a proton exchange membrane fuel cell under dynamic loading. Energy Conversion and Management. 2020;226:113492. https://doi.org/10.1016/j.enconman.2020.113492
  • 15. Ma T, Cong M, Wang Y, Liang Y, Wang K, Yang Y. Investigation of PEM fuel cell degradation under on-off cyclic condition. SAE Technical Paper 2021. 2021-01-7022. https://doi.org/10.4271/2021-01-7022
  • 16. Huang Z, Shen J, Chan SH, Tu Z. Transient response of performance in a proton exchange membrane fuel cell under dynamic loading. Energy Conversion and Management. 2020;226:113492. https://doi.org/10.1016/j.enconman.2020.113492
  • 17. Kumar R, Subramanian KA. Enhancement of efficiency and power output of hydrogen fuelled proton exchange membrane (PEM) fuel cell using oxygen enriched air. International Journal of Hydrogen Energy. 2023;48(15):6067-6075. https://doi.org/10.1016/j.ijhydene.2022.11.141
  • 18. Liu P, Xu S. Experimental analysis of –30°C cold start process for an automotive PEM fuel cell system. SAE Technical Paper 2022. 2022-01-0694. https://doi.org/10.4271/2022-01-0694
  • 19. Walters M, Wick M, Tinz S, Ogrzewalla J, Sehr A, Pischinger S. Fuel cell system development: a strong influence on FCEV performance. SAE Int J Alt Power. 2018;7(3):335-350. https://doi.org/10.4271/2018-01-1305
  • 20. Vidovi´c T, Tolj I, Radica G, Bodroži´c Coko N. Proton-exchange membrane fuel cell balance of plant and performance simulation for vehicle applications. Energies. 2022;15:8110. https://doi.org/10.3390/en15218110
  • 21. Sery J, Leduc P. Fuel cell behavior and energy balance on board a Hyundai Nexo. International Journal of Engine Research. 2022;23(5):709-720. https://doi.org/10.1177/14680874211059046
  • 22. Wang H, Gaillard A, Hissel D. A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles. Renewable Energy. 2019;141:124-138. https://doi.org/10.1016/j.renene.2019.03.130
  • 23. Pietra A, Gianni M, Zuliani N, Malabotti S, Taccani R. Experimental characterization of a PEM fuel cell for marine power generation. E3S Web of Conferences. 2022;334:05002. https://doi.org/10.1051/e3sconf/202233405002
  • 24. Verry WD. DC-DC converter topology in a 5 kW PEM fuel cell. 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC). 2014:1-8. https://doi.org/10.1109/intlec.2014.6972145
  • 25. Barbir F. Fuel cell electrochemistry (chapter 3), Editor(s): Frano Barbir, PEM Fuel Cells. Academic Press, 2005. 33-72. https://doi.org/10.1016/B978-012078142-3/50004-5
  • 26. Larminie J, Dicks A. Fuel cell systems explained. Third Edition. John Wiley & Sons Ltd; 2018. https://doi.org/10.1002/9781118706992
  • 27. Hybrid Energy Lab. Instruction Heliocentris Academia GmbH. 2016. http://www.heliocentris.com
  • 28. Kandidayeni M, Chaoui H, Boulon L, Kelouwani S, Trovão JPF. Online system identification of a fuel cell stack with guaranteedstability for energy management applications. IEEE Transactions on Energy Conversion. 2021;36(4):2714-2723. https://doi.org/10.1109/TEC.2021.3063701
  • 29. Pielecha I. Modeling of fuel cells characteristics in relation to real driving conditions of FCHEV vehicles. Energies. 2022;15:6753. https://doi.org/10.3390/en15186753
  • 30. Yuvarajan S, Yu D. Characteristics and modelling of PEM fuel cells. 2004 IEEE International Symposium on Circuits and Systems(ISCAS). 2004:880-883. https://doi.org/10.1109/ISCAS.2004.1329949
  • 31. Gong C, Xing L, Liang C, Tu Z. Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle. Renewable Energy. 2022;188:1094-1104. https://doi.org/10.1016/j.renene.2022.02.104
  • 32. Bai F, Lei L, Zhang Z, Li H, Yan J, Chen L, Dai Y-J, Chen L, Tao W-Q. Application of similarity theory in modeling the output characteristics of proton exchange membrane fuel cell. Int J Hydrogen Energy. 2021;46(74):36940-36953. https://doi.org/10.1016/j.ijhydene.2021.08.205
  • 33. Ceran B, Orłowska A, Krochmalny K. The method of determining PEMFC fuel cell stack performance decrease rate based on the voltage-current characteristic shift. Eksploat Niezawodn. 2020;22(3):530-535. https://doi.org/10.17531/ein.2020.3.16
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a83eeb72-de27-4881-bb00-5a04f736acd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.