Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 17, no. 4 | 203--212
Tytuł artykułu

Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
Wydawca

Rocznik
Strony
203--212
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
autor
  • Department of Radiology, Hospital of the University of Pennsylvania, 3400, Spruce St, Philadelphia, PA 19104, USA, Phone: 215-662-3069, Fax: 215-573-4107, abass.alavi@pennmedicine.upenn.edu
  • Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Theranostics Center, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Theranostics Center, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Anger HO. Scintillation camera. Rev Sci Instrum 1958;29:27-33.
  • 2. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963;80:653-62.
  • 3. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 1973;46: 1016-22.
  • 4. Keyes JW, Jr, Orlandea N, Heetderks WJ, Leonard PF, Rogers W. The Humongotron-a scintillation-camera transaxial tomograph. J Nucl Med 1977;18:381-7.
  • 5. Budinger TF, Rollo FD. Physics and instrumentation. Prog Cardiovasc Dis 1977;20:19-53.
  • 6. Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med 2002;32:2-5.
  • 7. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89-98.
  • 8. Cegła P, Piotrowski T. History of PET in Poland. Bio-Algorithms and Med-System. 2021;17:259-64.
  • 9. Joliot F, Curie I. Artificial production of a new kind of radioelement. Nature 1934;133:201-2.
  • 10. Wertenstein L. An artificial radioelement from nitrogen. Nature 1934;133:564-5.
  • 11. Danysz M, Żyw M. Un radioelement nouveau. Acta Phys Pol 1934; 3:485.
  • 12. Zyw M. Induced radioactivity of potassium. Nature 1934;134: 64-5.
  • 13. Moskal P, Stępień E. Prospects and clinical perspectives of totalbody PET imaging using plastic scintillators. Pet Clin 2020;15: 439-52.
  • 14. Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/ MIC).Manchester, UK: IEEE Xplore; 2020.
  • 15. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7: eabh4394.
  • 16. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973; 242:190-1.
  • 17. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484-99.
  • 18. Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010;1:5358.
  • 19. Alessio AM, Kinahan PE, Cheng PM, Vesselle H, Karp JS. PET/CT scanner instrumentation, challenges, and solutions. Radiol Clin North Am 2004;42:1017-32.
  • 20. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369-79.
  • 21. Torigian DA, Kjær A, Zaidi H, Alavi A. PET/MR imaging: clinical applications. Pet Clin 2016;11:xi-xii.
  • 22. Ingvar D. Quantitative determination of cerebral blood flow in man. Lancet 1961;2:806-7.
  • 23. Alavi A, Werner TJ, Høilund-Carlsen PF. PET-based imaging to detect and characterize cardiovascular disorders: unavoidable path for the foreseeable future. J Nucl Cardiol 2018;25:203-7.
  • 24. Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imag 2008;35:1554-9.
  • 25. Ido T, Wan CN, Casella V, Fowler J, Wolf A, Reivich M, et al. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm 1978;14:175-83.
  • 26. Hess S, Høilund-Carlsen PF, Alavi A. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study. Clin Nucl Med 2014;39:701-3.
  • 27. Alavi A, Hess S, Werner TJ, Høilund-Carlsen PF. An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur J Nucl Med Mol Imag 2020;47:18-27.
  • 28. Alavi A, Werner TJ. FDG-PET imaging to detect and characterize infectious disorders; an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging 2017;44:417-20.
  • 29. McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. (18)F-NaF and (18)F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging 2018;45:2190-200.
  • 30. Moghbel M, Al-Zaghal A, Werner TJ, Constantinescu CM, HøilundCarlsen PF, Alavi A. The role of PET in evaluating atherosclerosis: a critical review. Semin Nucl Med 2018;48:488-97.
  • 31. Hess S, Madsen PH, Iversen ED, Frifelt JJ, Høilund-Carlsen PF, Alavi A. Efficacy of FDG PET/CT imaging for venous thromboembolic disorders: preliminary results from a prospective, observational pilot study. Clin Nucl Med 2015;40:e23-6.
  • 32. Kaghazchi F, Borja AJ, Hancin EC, Bhattaru A, Detchou DKE, Seraj SM, et al. Venous thromboembolism detected by FDG-PET/CT in cancer patients: a common, yet life-threatening observation. Am J Nucl Med Mol Imaging 2021;11:99-106.
  • 33. Al-Zaghal A, Raynor WY, Seraj SM, Werner TJ, Alavi A. FDG-PET imaging to detect and characterize underlying causes of fever of unknown origin: an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging 2019;46:2-7.
  • 34. Saboury B, Salavati A, Brothers A, Basu S, Kwee TC, Lam MG, et al. FDG PET/CT in Crohn’s disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. Eur J Nucl Med Mol Imaging 2014;41: 605-14.
  • 35. Deogaonkar V, Chandra Khangembam B, Seraj SM, Alavi A, Kumar R, Vangu MD, et al. Novel quantitative PET imaging techniques in tuberculosis. Pet Clin 2020;15:231-40.
  • 36. Kung BT, Seraj SM, Zadeh MZ, Rojulpote C, Kothekar E, Ayubcha C, et al. An update on the role of (18)F-FDG-PET/CT in major infectious and inflammatory diseases. Am J Nucl Med Mol Imaging 2019;9:255-73.
  • 37. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299.
  • 38. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
  • 39. Saboury B, Morris MA, Farhadi F, Nikpanah M, Werner TJ, Jones EC, et al. Reinventing molecular imaging with total-body PET, Part I: technical revolution in evolution. Pet Clin 2020;15:427-38.
  • 40. Saboury B, Morris MA, Nikpanah M, Werner TJ, Jones EC, Alavi A. Reinventing molecular imaging with total-body PET, Part II: clinical applications. Pet Clin 2020;15:463-75.
  • 41. Choiński J. Radiopharmaceutical production for PET imaging in Poland. Acta Phys Pol, A 2015;127:1520-22.
  • 42. Wrzesień M, Albiniak Ł. Hand exposure of workers in 18F-FDG production centre. J Radiol Prot 2016;36:N67.
  • 43. Zadeh MZ, Raynor WY, Seraj SM, Ayubcha C, Kothekar E, Werner T, et al. Evolving roles of fluorodeoxyglucose and sodium fluoride in assessment of multiple myeloma patients: introducing a novel method of PET quantification to overcome shortcomings of the existing approaches. Pet Clin 2019;14:341-52.
  • 44. Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020;61:136-43.
  • 45. Lan X, Younis MH, Li K, Cai W. First clinical experience of 106 cm, long axial field-of-view (LAFOV) PET/CT: an elegant balance between standard axial (23 cm) and total-body (194 cm) systems. Eur J Nucl Med Mol Imaging 2021;48:3755-9.
  • 46. Surti S, Werner ME, Karp JS. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness. Phys Med Biol 2013;58:3995-4012.
  • 47. Zhang J, Knopp MI, Knopp MV. Sparse detector configuration in SiPM digital photon counting PET: a feasibility study. Mol Imaging Biol 2019;21:447-53.
  • 48. Zein SA, Karakatsanis NA, Issa M, Haj-Ali AA, Nehmeh SA. Physical performance of a long axial field-of-view PET scanner prototype with sparse rings configuration: a Monte Carlo simulation study. Med Phys 2020;47:1949-57.
  • 49. Gonzalez-Montoro A, Sanchez F, Majewski S, Zanettini S, Benlloch J, Gonzalez A. Highly improved operation of monolithic BGO-PET blocks. J Instrum 2017;12:C11027.
  • 50. Brunner SE, Schaart DR. BGO as a hybrid scintillator/Cherenkov radiator for cost-effective time-of-flight PET. Phys Med Biol 2017; 62:4421-39.
  • 51. Cates JW, Levin CS. Electronics method to advance the coincidence time resolution with bismuth germanate. Phys Med Biol 2019;64:175016.
  • 52. Gundacker S, Martinez Turtos R, Kratochwil N, Pots RH, Paganoni M, Lecoq P, et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys Med Biol 2020;65: 025001.
  • 53. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zielinski M. Novel detector systems for the positron emission tomography. Bio Algorithms Med Syst 2011;7:73-8.
  • 54. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kubicz E, Moskal I, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2014;764:317-21.
  • 55. Moskal P, Kowalski P, Shopa R, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 56. Kapłon Ł, Moskal G. Blue-emitting polystyrene scintillators for plastic scintillation dosimetry. Bio Algorithm Med Syst 2021;17: 191-7.
  • 57. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technology for the whole-body PET imaging; 2017.arXiv preprint arXiv:171011369.
  • 58. Moskal P, Bednarski T, Niedźwiecki S, Silarski M, Czerwiński E, Kozik T, et al. Synchronization and calibration of the 24-modules J-PET prototype with 300-mm axial field of view. IEEE Trans Instrum Meas 2020;70:1-10.
  • 59. Dulski K, Bass S, Chhokar J, Chug N, Curceanu C, Czerwiński E, et al. The J-PET detektor-a tool for precision studies of orthopositronium decays. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2021;1008:165452.
  • 60. Høilund-Carlsen PF, Sanz-Viedma S. Six pioneers artistically celebrated by the andalusian society of nuclear medicine. Eur J Nucl Med Mol Imag 2021;48:329-31.
  • 61. Schmall JP, Karp JS, Alavi A. The potential role of total body PET imaging in assessment of atherosclerosis. Pet Clin 2019;14: 245-50.
  • 62. Nakajima R, Abe K, Sakai S. IgG4-related diseases; whole-body FDG-PET/CT may be easier to evaluate rare lesions. Soc Nuclear Med 2017;58:943.
  • 63. Yamashita H, Kubota K, Mimori A. Clinical value of whole-body PET/CT in patients with active rheumatic diseases. Arthritis Res Ther 2014;16:1-12.
  • 64. Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021;66: 06RM1.
  • 65. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527-9.
  • 66. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64: 055017.
  • 67. Moskal P, Kisielewska D, Y Shopa R, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:1-16.
  • 68. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12: 5658.
  • 69. Moskal P, Kubicz E, Grudzien G, Czerwinski E, Dulski K, Leszczynski B, et al. Developing a novel positronium biomarker for cardiac myxoma imaging. bioRxiv; 2021.
  • 70. Stepien E, Kubicz E, Grudzien G, Dulski K, Leszczynski B, Moskal P. Positronium life-time as a new approach for cardiac masses imaging. Eur Heart J 2021;42:3279.
  • 71. Stepanov P, Selim F, Stepanov S, Bokov A, Ilyukhina O, Duplâtre G, et al. Interaction of positronium with dissolved oxygen in liquids. Phys Chem Chem Phys 2020;22:5123-31.
  • 72. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys 2020;3:1-8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a83b0fa0-4912-4af4-9962-43b469f9308c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.