Warianty tytułu
Języki publikacji
Abstrakty
The research sought to evaluate the normalized difference vegetation index (NDVI) of the study area located in the province of Tayacaja, which includes the districts of Acraquia, Ahuaycha, Pampas and Daniel Hernández, which is part of the central Andes of Peru. The data were collected in low water seasons with a longitudinal cut of 30 years with one sample per year, starting in 1993 until 2022; these samples corresponded to the month of August of each year. The images were extracted from maps from Landsat satellite databases, which were filtered for low cloud cover to avoid interference with the images. Maps from 1993 to 2012 were obtained from Landsat 5 satellite, while from 2013 to 2022 data were obtained from Landsat 8 satellite. The normalized difference vegetation index was determined using Quantum GIS based on the red and near infrared maps; being the minimum NDVI value obtained -0.18, which corresponds to the aquatic body of the Upamayu River that crosses from west to east the study area; while the highest NDVI obtained was 0.79 indicating a greater vegetation cover constituted by mainly eucalyptus plants. The mean NDVI of the 30 years is close to 0.21; this is an indicator that the vegetation is scarce and that it is decreasing mainly due to population growth.
Słowa kluczowe
Rocznik
Tom
Strony
208--215
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú, hipolito.carbajal@unh.edu.pe
- Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
- Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
autor
- Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo 12006, Junín, Perú
- Facultad de Ingeniería, Universidad Nacional de Trujillo, VXM5+HVJ, Trujillo 13011, La Libertad, Perú
- Facultad de Ciencias de la Salud,Universidad Nacional de Huancavelica, Av. Agricultura No 319–321. Sector Paturpampa 09001, Huancavelica, Perú
Bibliografia
- 1. Cacilda-André, J., Lastra-Rivero, J.F., Montero, G.I. 2023. Análisis multitemporal aplicado a la gestión ambiental en la extracción de rocas y minerales industriales en Sumbe, Angola. Universidad y Sociedad, 15(S1 SE-Artículos). https://rus.ucf.edu.cu/index.php/rus/article/view/3717
- 2. Camas-Guardamino, D.J., Mamani-Sinche, M.S. 2022. Evaluación de la vegetación y saturación del suelo en el Área de Conservación Regional Humedales de Ventanilla mediante teledetección en Perú, 2006-2021. Revista de Ciencias Ambientales, 56(1), 54–74. https://doi.org/10.15359/rca.56/1.3
- 3. Carbajal Morán, H., Márquez Camarena, J.F., Zárate Quiñones, R.H., De la Cruz Vílchez, E.E. 2021. Monitoring the Hydrogen Potential of a River in the Central Andes of Peru From the Cloud. Ecological Engineering & Environmental Technology, 22(6), 17–26. https://doi.org/10.12912/27197050/141676
- 4. Dutta, D., Rahman, A., Paul, S.K., Kundu, A. 2021. Spatial and temporal trends of urban green spaces: an assessment using hyper-temporal NDVI datasets. Geocarto International, 1–21. https://doi.org/10.1080/10106049.2021.1989499
- 5. Fokeng, R.M., Fogwe, Z.N. 2022. Landsat NDVI-based vegetation degradation dynamics and its response to rainfall variability and anthropogenic stressors in Southern Bui Plateau, Cameroon. Geosystems and Geoenvironment, 1(3), 100075. https://doi.org/10.1016/j.geogeo.2022.100075f
- 6. Fung, T., Siu, W. 2000. Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing, 21(5), 1011–1024. https://doi.org/10.1080/014311600210407
- 7. GOREH. 2007. Estudio de diagnóstico y zonificación de la provincia de Tayacaja. Journal of Chemical Information and Modeling, 246. https://doi.org/10.1017/CBO9781107415324.004
- 8. Guo, E., Wang, Y., Wang, C., Sun, Z., Bao, Y., Mandula, N., Jirigala, B., Bao, Y., Li, H. 2021. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sensing, 13(4), 688. https://doi.org/10.3390/rs13040688
- 9. Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1
- 10.Jia, X., Han, H., Feng, Y., Song, P., He, R., Liu, Y., Wang, P., Zhang, K., Du, C., Ge, S. 2023. Scaledependent and driving relationships between spatial features and carbon storage and sequestration in an urban park, in Zhengzhou, China. Science of The Total Environment, 164916. https://doi.org/10.1016/j.scitotenv.2023.164916
- 11. Kasoro, F.R., Yan, L., Zhang, W., Asante-Badu, B. 2021. Spatial and temporal changes of vegetation cover in china based on modis ndvi. Appl. Ecol. Environ. Res, 19, 1371–1390. https://doi.org/10.15666/aeer/1902_13711390
- 12. Lacouture, D.L., Broadbent, E.N., Crandall, R.M. 2020. Detecting vegetation recovery after fire in a fire-frequented habitat using normalized difference vegetation index (NDVI). Forests, 11(7), 749. https://doi.org/10.3390/f11070749
- 13. Li, C., Jia, X., Zhu, R., Mei, X., Wang, D., Zhang, X. 2023. Seasonal Spatiotemporal Changes in the NDVI and Its Driving Forces in Wuliangsu Lake Basin, Northern China from 1990 to 2020. Remote Sensing, 15(12), 2965. https://doi.org/10.3390/rs15122965
- 14. Meng, N., Wang, N., Cheng, H., Liu, X., Niu, Z. 2023. Impacts of climate change and anthropogenic activities on the normalized difference vegetation index of desertified areas in northern China. Journal of Geographical Sciences, 33(3), 483–507. https://doi.org/10.1007/s11442-023 -2093-y
- 15. Oddi, L., Migliavacca, M., Cremonese, E., Filippa, G., Vacchiano, G., Siniscalco, C., Morra di Cella, U., Galvagno, M. 2022. Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environmental Research Letters, 17(4), 45015. https://doi.org/10.1088/1748-9326/ac5b3a
- 16. Pérez, L. 2014. Identificación de vegetación en imágenes satelitales [Instituto Politécnico Nacional]. https://tesis.ipn.mx/bitstream/handle/123456789/18056/Identificacion de vegetacion en imagenes satelitales.pdf?sequence=1&isAllowed=y
- 17. Radočaj, D., Šiljeg, A., Marinović, R., Jurišić, M. 2023. State of major vegetation indices in precision agriculture studies indexed in web of science: A review. Agriculture, 13(3), 707. https://doi.org/10.3390/agriculture13030707
- 18. Rahman, M.M., Lamb, D.W. 2017. The role of directional LAI in determining the fAPAR–NDVI relationship when using active optical sensors in tall fescue (Festuca arundinacea) pasture. International Journal of Remote Sensing, 38(11), 3219–3235. https://doi.org/10.1080/01431161.2017.1292069
- 19. Ramos, A.P.M., Osco, L.P., Furuya, D.E.G., Gonçalves, W.N., Santana, D.C., Teodoro, L.P.R., da Silva Junior, C.A., Capristo-Silva, G.F., Li, J., Baio, F.H.R. 2020. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 178, 105791.
- 20.Reymundo, B.J.Q., Acevedo, R.H.R. 2020. Temperatura superficial y estado de la vegetación del bosque de Polylepis spp, distrito de San Marcos de Rocchac, Huancavelica–Perú. Enfoque UTE, 11(3), 69–86.
- 21. Romero, M. 2016. Evaluacion del Indice de Vegetacion de Diferencia Normalizada para determinar el estado de conservación del bosque de ceja andina sur occidental del parque nacional Sagay, Parroquia Achupallas, Canton Alaisi, provincia de Chimbotazo, 1–46. http://dspace.espoch.edu.ec/bitstream/123456789/5138/1/33T0159.pdf
- 22. Spadoni, G.L., Cavalli, A., Congedo, L., Munafò, M. 2020. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment, 20, 100419. https://doi.org/10.1016/j.rsase.2020.100419
- 23. USGS. 2020. EarthExplorer. https://earthexplorer.usgs.gov/
- 24. USGS. 2021. EarthExplorer. https://earthexplorer.usgs.gov/
- 25. USGS. 2023a. Landsat 5, U.S. Geological Survey. https://www.usgs.gov/landsat-missions/landsat-5
- 26. USGS. 2023b. Landsat 8, U.S. Geological Survey. https://www.usgs.gov/landsat-missions/landsat-8
- 27. Xu, Z., Cao, L., Zhong, S., Liu, G., Yang, Y., Zhu, S., Luo, X., Di, L. 2020. Trends in global vegetative drought from long-term satellite remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 815–826. https://doi.org/10.1109/JSTARS.2020.2972574.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a82ec95e-0c7e-43b4-91f2-b480d084e9ca