Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 3 | 320--337
Tytuł artykułu

Influence of Liner Form and Explosive on the Velocity and Mechanical Action of a Shaped-Charge Jet

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of modeling the operation of shaped charges with conical, biconical, and elliptical liners and various detonation initiation schemes are presented. A comparison of the modeling results with data from experimental studies conducted on charge models and with the results of modeling by other authors has been carried out. A dependence of the leading part velocity of the copper shaped-charge jet for copper liners with apex angles of 44-50° on the parameter ρD2 in the low detonation velocity (D) and explosive density (ρ) range, is proposed.
Słowa kluczowe
Wydawca

Rocznik
Strony
320--337
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Institute of Hydromechanics of NAS Ukraine, Kyiv, Ukraine
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
  • Institute of Hydromechanics of NAS Ukraine, Kyiv, Ukraine
  • Institute of Hydromechanics of NAS Ukraine, Kyiv, Ukraine
  • Explosive Materials Processing Research and Scientific Center, Paton Institute of Electric Welding of NAS, Ukraine
  • Shostka Institute of Sumy State University, Ukraine
Bibliografia
  • [1] Orlenko, L.P. Physics of Explosion. Moscow, FIZMATLIT, 2002, p. 650.
  • [2] Voitenko, Y.; Sydorenko, Y.; Zakusylo, R.; Goshovskii, S.; Zaichenko, S.; Boyko, V. On the Influence of the Liner Shape and Charge Detonation Scheme on the Kinetic Characteristics of Shaped Charge Jets and Explosively Formed Penetrators. Cent. Eur. J. Energ. Mater. 2023, 20(4): 417-442; https://doi.org/10.22211/cejem/173190.
  • [3] Habera, Ł.; Hebda, K.; Koślik, P.; Sałacińskі, Т. The Shooting Tests of Target Perforating Ability, Performed on Cast Concrete Cylinders. Cent. Eur. J. Energ. Mater. 2020, 17(4): 584-599; https://doi.org/10.22211/cejem/132066.
  • [4] Elshenawy, T.; Li, Q.M.; Elbeih, A. Experimental and Numerical Investigation of Zirconium Jet Performance with Different Liner Shapes Desing. Def. Technol. 2022, 18(1): 12-25; https://doi.org/10.1016/j.dt.2020.11.019.
  • [5] Fedorov, S.V. Numerical Modeling of the Formation of Shaped-Charge Jets by Hemispherical Linings of Degressive Thickness. Physics and Chemistry of Explosion. 2016, 52(5): 116-130.
  • [6] Svirskiy, O.V.; Vlasova, M.A. On the Penetrating Ability of Shaped Charges with Conical and Hemispherical Linings. Physics and Chemistry of Explosion. 2019, 55(6): 115-131.
  • [7] Kemmoukhe, H.; Savić, S.; Terzić, S.; Lisov, M.; Rezgui, N.; Sedra, H. Improvement of the Shaped Charge Jet Penetration Capability by Modifying the Liner Form Using AUTODYN-2D. Sci. Tech. Rev. 2019, 69(1): 10-15; https://doi.org/ 10.5937/str1901010K.
  • [8] Cheng, X.; Huang, G.; Liu, C.; Feng, S. Design of a Novel Linear Shaped Charge and Factors Influencing Its Penetration Performance. Appl. Sci. 2018, 8(10): paper 1863; https://doi.org/10.3390/app8101863.
  • [9] Du, Y.; He, G.; Liu, Y.; Guo, Z.; Qiao, Z. Study on Penetration Performance of Rear Shaped Charge Warhead. Materials 2021, 14(21) paper 6526; https://doi.org/10.3390/ma14216526.
  • [10] Zochowski, P.; Warchoł, R.; Miszczak, M.; Nita, M.; Pankowski, Z.; Bajkowski, M. Experimental and Numerical Study on the PG-7VM Warhead Performance against High-Hardness Armor Steel. Materials 2021, 14(11) paper 3020; https://doi.org/10.3390/ma14113020.
  • [11] Walters, W. Introduction to Shaped Charges. Aberdeen Proving Ground. Report MD 21005-5069, ARL-SR-150, Army Research Laboratory, 2007, p. 110.
  • [12] Vasyukov, V.I.; Dildin, Y.M.; Ladov, S.V.; Fedorov, S.V. Determination of the Energy of a Shaped-Charge Jet in Various Ways. Engineering Journal: Science and Innovation. 2017, 4; http://dx.doi.org/10.18698/2308-6033-2017-4-1608.
  • [13] Xiao, Q.Q.; Huang, Z.X.; Zu, X.D.; Jia, X. Influence of Drift Velocity and Distance Between Jet Particles on the Penetration Depth of Shaped Charges. Propellants Explos., Pyrotech. 2016, 41(1): 76-83; https://doi.org/10.1002/prep.201500051.
  • [14] Boiko, V.; Kravets, V.; Han, O.; Han, A.; Zakusylo, R. Efficiency Foam Compositions for Compacting Structurally Unstable Soil. Cent. Eur. J. Energ. Mater. 2023, 20(4): 3-17; https://doi.org/10.22211/cejem/176913.
  • [15] Drachuk, A.G.; Goshovskii, S.V.; Voitenko, Y.I. The Calculation Parameters of Shaped Charges with Porous Liners. Ukrainian State Geological Exploration Institute, Kiev, 2007, p. 42.
  • [16] Elbeih, A.; Elshenawy, T.; Zeman, S.; Akstein, Z. Application of BCHMX in Shaped Charges against RHA Targets Compared to Different Nitramine Explosives. Cent. Eur. J. Energ. Mater. 2018, 15(1): 3-17; https://doi.org/10.22211/cejem/81604.
  • [17] Held, M. Airtarget Warheads. Int. Def. Rev. 1975, 8(5): 719.
  • [18] Held, M. Dynamic Plate Thickness of ERA Sandwiches against Shaped Charge Jets. Propellants Explos., Pyrotech. 2004, 29(4): 244-246; https://doi.org/10.1002/prep.200400051.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7f3784c-5ae1-40ba-bb52-808dadd3cff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.