Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 6 | 2825--2838
Tytuł artykułu

Discharge estimation and rating curve derivation, using satellite geometry data and isovel contours at Karun River, Iran

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining discharge and stage-discharge curves in fluvial environments without hydrometric gauges is a critical challenge in hydrologic studies and river hydraulics. This issue will be more evident in managing flood hazards in the rivers of arid areas without flow measurement gauges, where the reaction time is the critical factor. Researchers and designers have always tried to access simpler, cheaper methods to estimate discharge and rating curves. This research aims to facilitate the determination of the discharge and stage-discharge relationship by applying remote sensing techniques and the concept of isovel contours. For this purpose, the geometry of the river cross section is determined using remotely sensed data from the images of the Sentinel-1 and two satellites, and then discharge passed through the cross section is estimated by the single point velocity measurement method. The observed data were collected from the Mollasani station in Karun River, Iran, to confirm this method. The obtained discharges and stage-discharge relationship curves are used to evaluate the accuracy of the proposed methodology. Statistical analyses showed that the mean value of the normalized percentage error and mean absolute percentage error (MAPE) calculated based on the difference between the estimated and observed discharges are limited to 6.3 and 8.36%, respectively. Also, the stage-discharge curves in these studies were estimated with a maximum MAPE of 9.5%, which is considered a good initial approximation considering the minimum required data.
Wydawca

Czasopismo
Rocznik
Strony
2825--2838
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran
  • Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran, maghrebi@um.ac.ir
Bibliografia
  • 1. Al-Khudhairy D, Leemhuis C, Hoffmann V, Shepherd IM, Calaon R (2002) Monitoring wetland ditch water levels using Landsat TM and ground-based measurements. Photogramm Eng Remote Sens 68(8):809–818
  • 2. Bjerklie DM, Moller D, Smith LC, Dingman SL (2005) Estimating discharge in rivers using remotely sensed hydraulic information. J Hydrol 309(1):191–209. https://doi.org/10.1016/j.jhydrol.2004.11.022
  • 3. Boothroyd RJ, Williams RD, Hoey TB, Barrett B, Prasojo OA (2021) Applications of google earth engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip Rev: Water 8(1):e21496
  • 4. Cavallo C, Nicolina PM, Gargiulo M, Palau-Salvador G, Vezza P, Ruello G (2021a) Continuous Monitoring of the flooding dynamics in the albuferawetland (Spain) by Landsat-8 and Sentinel-2 datasets. Remote Sens 2021(13):3525. https://doi.org/10.3390/rs13173525
  • 5. Cavallo C, Nones M, Nicolina Papa M, Gargiulo M, Ruello G, (2021b) Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto International, Taylor & Francis Onlinehttps://doi.org/10.1080/10106049.2021.2002431
  • 6. Chen C-L (1991) Unified theory on power laws for flow resistance. J Hydraul Eng 117(3):371–389. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(371)
  • 7. Coe MT, Birkett CM, (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad Basin. Water Resour Res, 40(10), https://doi.org/10.1029/2003WR002543
  • 8. Farnoush H, Maghrebi MF (2021) Application of surface velocimetry in estimating rating curves in compound channels. Flow Meas Instrum 82:402–409. https://doi.org/10.1016/j.flowmeasinst,2021.102049
  • 9. Genç O, Ardıçlıoğlu M, Ağıralioğlu N (2015) Calculation of mean velocity and discharge using water surface velocity in small streams. Flow Meas Instrum 41:115–120
  • 10. Gilvear DJ, Bryant R (2016) Analysis of remotely sensed data for fluvial geomorphology and river science. In: Kondolf M, Piegay H (eds) Tools in fluvial geomorphology. Wiley, Chichester, England, pp 103–132
  • 11. Gleason C, Smith L, Lee J (2014) Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: sensitivity to river form and optimisation parameters. AGU Water Resour Res 50(12):9604–9619
  • 12. Jiang H, Feng M, Zhu Y, Lu N, Huang J, Xiao T (2014) An automated method for extracting rivers and lakes from Landsat imagery. Remote Sens 6(6):5067–5089
  • 13. Maghrebi MF (2006) Application of the single-point measurement in discharge estimation. Adv Water Resour 29(10):1504–1514. https://doi.org/10.1016/j.advwatres.2005.11.007
  • 14. Maghrebi MF, Ahmadi A (2017) Stage-discharge prediction in natural rivers using an innovative approach. J Hydrol 545:172–181
  • 15. Maghrebi MF, Ball JE (2006) New method for estimation of discharge. J Hydraul Eng 132(10):1044–1051. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1044),1044-1051
  • 16. Maghrebi MF, Kavousizadeh A, Maghrebi RF, Ahmadi A (2017) Stage–discharge estimation in straight compound channels using isovel contours. Hydrol Process 31:3859–3870. https://doi.org/10.1002/hyp.11299
  • 17. Maghrebi MF (2003) Discharge estimation in flumes using a new technique for the production of isovel contours, In: Proceeding Int. Conf. Civ. Environ. Eng. ICCEE: pp. 147–156
  • 18. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int J Appl Earth Obs Geoinf 9(3):247–263
  • 19. McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432
  • 20. Paris A, Paiva R, Silva J, Moreira M, Calmant S, Garambois P, Collischonn W, Bonnet M, Seyler F (2016) Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon Basin. Water Resour Res. https://doi.org/10.1002/2014WR016618
  • 21. Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F. (2009) Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Rev Geophys, 47(4). https://doi.org/10.1029/2008RG000274.
  • 22. Smith LC, Isacks B, Forster R, Bloom A, Preuss I (1995) Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: first results. Water Resour Res 31(5):1325–1329
  • 23. Smith LC, Isacks BL, Bloom AL, Murray AB (1996) Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungauged basins. Water Resour Res 32(7):2021–2034
  • 24. Smith LC, Pavelsky TM (2008) Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resour Res, 44(3) https://doi.org/10.1029/2007WR006133
  • 25. Tarpanelli A, Brocca L, Lacava T, Melone F, Moramarco T, Faruolo M, Pergola N, Tramutoli V (2013) Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens Environ 136:47–55. https://doi.org/10.1016/j.rse.2013.04.010
  • 26. Tian H, Li W, Wu M, Huang N, Li G, Li X, Niu Z (2017) Dynamic Monitoring of the largest freshwater lake in china using a newwater index derived from high spatiotemporal resolution sentinel-1A data. Remote Sens 9(6):521. https://doi.org/10.3390/rs9060521
  • 27. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033
  • 28. Xu K, Zhang J, Watanabe M, Sun C (2004) Estimating river discharge from very high-resolution satellite data: a case study in the Yangtze RiverChina. Hydrol Process 18(10):1927–1939. https://doi.org/10.1002/hyp.1458
  • 29. Yen BC (2002) Open channel flow resistance. J Hydraul Eng 128(1):20–39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7d32136-007d-47de-9751-d4497d41b36f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.