Czasopismo
2014
|
Vol. 135, nr 1/2
|
103--115
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We provide a quadratic-time algorithm for generating hv-convex polyominoes according to a given horizontal projection. The method can be used to generate hv-convex polyominoes with the prescribed projection and with a fixed or arbitrary horizontal dimension, from a uniform random distribution.
Czasopismo
Rocznik
Tom
Strony
103--115
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2. H-6720, Szeged, Hungary, nhantos@inf.u-szeged.hu
autor
- Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2. H-6720, Szeged, Hungary, pbalazs@inf.u-szeged.hu
Bibliografia
- [1] E. Balogh, A. Kuba, Cs. Dévényi, A. Del Lungo, Comparison of algorithms for reconstructing hv-convex discrete sets, Lin. Alg. and Its Appl. 339(1–3) (2001) 23–35.
- [2] E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Medians of polyominoes: A property for the reconstruction, Int. J. Imaging Syst. and Techn. 9 (1998) 69–77.
- [3] S. Brunetti, A. Daurat, Random generation of Q-convex sets, Theor. Comput. Sci. 347(1–2) (2005) 393–414.
- [4] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction of 4- and 8-connected convex discrete sets from row and column projections, Lin. Alg. and Its Appl. 339(1–3) (2001) 37–57.
- [5] M. Chrobak, Ch. Dürr, Reconstructing hv-convex polyominoes from orthogonal projections, Information Processing Letters 69(6) (1999) 283–289.
- [6] A. Del Lungo, Polyominoes defined by two vectors, Theor. Comput. Sci. 127 (1994) 187–198.
- [7] A. Del Lungo, E. Duchi, A. Frosini, S. Rinaldi, Enumeration of convex polyominoes using the ECO method, Discrete Mathematics and Theoretical Computer Science, Proceedings (2003) 103–116.
- [8] A. Del Lungo, E. Duchi, A. Frosini, S. Rinaldi, On the generation and enumeration of some classes of convex polyominoes, The Electronic Journal of Combinatorics 11 (2004) R60.
- [9] A. Del Lungo, M. Nivat, R. Pinzani, The number of convex polyominoes recostructible from their orthogonal projections, Discrete Math. 157 (1996) 65–78.
- [10] S.W. Golomb, Polyominoes, Charles Scriber’s Sons, New York, 1965.
- [11] N. Hantos, P. Balázs, Reconstruction and enumeration of hv-convex polyominoes with given horizontal projection, Lecture Notes in Computer Sciences 8258 (2013) 100–107.
- [12] G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms and Applications, Birkhäuser, Boston, 1999.
- [13] G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and its Applications, Birkhäuser, Boston, 2007.
- [14] W. Hochstättler, M. Loebl, C. Moll, Generating convex polyominoes at random, Discrete Math. 153 (1996) 165–176.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7c94305-56ca-4732-8695-10e2b23a0745