Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 12 | 130--137
Tytuł artykułu

Review on wireless capsule endoscopy system issues, challenges, and technologies

Treść / Zawartość
Warianty tytułu
PL
Przegląd problemów, wyzwań i technologii związanych z bezprzewodowym systemem endoskopii kapsułkowej
Języki publikacji
EN
Abstrakty
EN
The gold standard for diagnosing disorders of the small bowel is wireless capsule endoscopy (WCE). Capsule endoscopy appears to represent the future of effective diagnostic gastrointestinal (GI) endoscopy. As capsule endoscopy doesn't cause any discomfort, it stands a better chance of being adopted by patients than traditional colonoscopy and gastroscopy, making it a good option for detecting cancer or ulcerations. WCE can be helpful in obtaining images of the GI tract from the inside, but pinpointing exactly where the disease is located is still a major challenge. In this paper, reviewing of the studies dealing with the development of the endoscopy capsule and finding techniques and solutions to provide higher efficiency is presented. Also, the paper showed that the tendency to use artificial intelligence (AI) led to an increase in the accuracy of detecting diseases and a decrease in mistakes caused by physicians' lack of attention or fatigue while reading a video from a capsule, as well as the role of artificial intelligence in shortening the time it takes to read the video. When it comes to WCE, deep learning has shown remarkable success in detecting a wide variety of disorders.
PL
Złotym standardem w diagnostyce zaburzeń jelita cienkiego jest bezprzewodowa endoskopia kapsułkowa (WCE). Wydaje się, że endoskopia kapsułkowa reprezentuje przyszłość skutecznej endoskopii diagnostycznej przewodu pokarmowego (GI). Ponieważ endoskopia kapsułkowa nie powoduje dyskomfortu, ma większe szanse na przyjęcie przez pacjentów niż tradycyjna kolonoskopia i gastroskopia, co czyni ją dobrą opcją do wykrywania nowotworów czy owrzodzeń. WCE może być pomocne w uzyskiwaniu obrazów przewodu pokarmowego od wewnątrz, ale dokładne określenie lokalizacji choroby nadal stanowi duże wyzwanie. W artykule przedstawiono przegląd badań dotyczących rozwoju kapsuły endoskopowej oraz poszukiwania technik i rozwiązań zapewniających wyższą wydajność. W artykule wykazano również, że tendencja do wykorzystywania sztucznej inteligencji (AI) doprowadziła do zwiększenia dokładności wykrywania chorób i zmniejszenia liczby błędów spowodowanych brakiem uwagi lub zmęczeniem lekarzy podczas czytania wideo z kapsuły, a także Rola sztucznej inteligencji w skróceniu czasu czytania wideo. Jeśli chodzi o WCE, głębokie uczenie się wykazało niezwykły sukces w wykrywaniu szerokiej gamy zaburzeń.
Wydawca

Rocznik
Strony
130--137
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Northern Technical University
  • Northern Technical University
  • Northern Technical University
Bibliografia
  • [1] Mateen, H., Basar, R., Ahmed, A. U., & Ahmad, M. Y. Localization of wireless capsule endoscope: A systematic review. IEEE Sensors Journal, 17 (5), (2017),1197-1206.
  • [2] Valdastri, P., Simi, M., & Webster, R. J. Advanced technologies for gastrointestinal endoscopy. Annual Review of Biomedical Engineering, 14, (2012), 397–429. https://doi.org/10.1146/annurev-bioeng-071811-150006
  • [3] Mohankumar, C. E., Kumar, S. V. D., Senthilkumar, S., Sornagopal, V., & Maharajan, M. S. RNN model-based classification of wireless capsule endoscopy bleeding images.
  • [4] Basar, M. R., Malek, F., Juni, K. M., Idris, M. S., & Saleh, M. I. M. Ingestible wireless capsule technology: A review of development and future indication. International Journal of Antennas and Propagation, (2012 Dec); 2012.
  • [5] Ionescu, A. G., Glodeanu, A. D., Ionescu, M., Zaharie, S. I., Ciurea, A. M., Golli, A. L., ... & Vere, C. C. Clinical impact of wireless capsule endoscopy for small bowel investigation. Experimental and Therapeutic Medicine, 23 (2022), (4), 1-9.
  • [6] Ilangovan, R., Burling, D., George, A., Gupta, A., Marshall, M., & Taylor, S. A. CT enterography: review of technique and practical tips. The British journal of radiology, 85 (2012), (1015), 876-886.
  • [7] Markova, I., Kluchova, K., Zboril, R., Mashlan, M., & Herman, M. Small bowel imaging-still a radiologic approach. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 154 (2), (2010),123-132.
  • [8] Khan, T. H., Shrestha, R., Wahid, K. A., & Babyn, P. Design of a smart-device and FPGA based wireless capsule endoscopic system. Sensors and Actuators A: Physical, 221, (2015), 77-87.
  • [9] Sekuboyina, A. K., Devarakonda, S. T., & Seelamantula, C. S. A convolutional neural network approach for abnormality detection in wireless capsule endoscopy. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (2017, April), (pp. 1057-1060). IEEE.
  • [10] Lu, B.. Image Aided Recognition of Wireless Capsule Endoscope Based on the Neural Network. Journal of Healthcare Engineering, (2022), 2022.
  • [11] Wang, G. B., Xuan, X. W., Jiang, D. L., Li, K., & Wang, W. A miniaturized implantable antenna sensor for wireless capsule endoscopy system. AEU-International Journal of Electronics and Communications, (2022), 143, 154022.
  • [12] Alam, M. W., Vedaei, S. S., & Wahid, K. A. A fluorescence-based wireless capsule endoscopy system for detecting colorectal cancer. Cancers, 12 (2020), (4), 890.
  • [13] Shamsan, Z. A. Spectrum sharing between wireless medical capsule endoscopy and LTE system. Alexandria Engineering Journal, 61 (2022), (12), 10283-10305.
  • [14] Cave, D. R., Hakimian, S., & Patel, K. Current controversies concerning capsule endoscopy. Digestive Diseases and Sciences, (2019), 64, 3040-3047.
  • [15] Kim, S. H., & Chun, H. J. Capsule endoscopy: Pitfalls and approaches to overcome. Diagnostics, 11 (2021), (10), 1765.
  • [16] Khaleghi, A., & Balasingham, I. Wireless communication link for capsule endoscope at 600 MHz. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2015, August), (pp. 4081-4084). IEEE.
  • [17] Van de Bruaene, C., De Looze, D., & Hindryckx, P. Small bowel capsule endoscopy: Where are we after almost 15 years of use?. World journal of gastrointestinal endoscopy, 7 (2015), (1), 13.
  • [18] Koprowski, R. Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy. Biomedical engineering online, (2015), 14, 1-23.
  • [19] Osagie, M. S. U., Enagbonma, O., & Inyang, A. I. (2018). Structural dynamics and evolution of capsule endoscopy (pill camera) technology in gastroenterologist assertion. arXiv preprint arXiv:1804.01171.
  • [20] Davis, B. R., Harris, H., & Vitale, G. C. The evolution of endoscopy: wireless capsule cameras for the diagnosis of occult gastrointestinal bleeding and inflammatory bowel disease. Surgical innovation, 12 (2005), (2), 129-133.
  • [21] Brown, A. P., & Jayatissa, A. H. Analysis of current and future technologies of capsule endoscopy: A mini review. Arch. Preventive Med., 5 (2020), (1), 31-34.
  • [22] Noormohammadi, R., Khaleghi, A., & Balasingham, I. Battery-free wireless communication for video capsule endoscopy. In 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT) (2019, May), (pp. 1-5). IEEE.
  • [23] Ezatian, R., Khaledyan, D., Jafari, K., Heidari, M., Khuzani, A. Z., & Mashhadi, N. Image quality enhancement in wireless capsule endoscopy with adaptive fraction gamma transformation and unsharp masking filter. In 2020 IEEE Global Humanitarian Technology Conference (GHTC) (2020), (pp. 1- 7). IEEE.
  • [24] Pan, G., & Wang, L. (2011). Swallowable wireless capsule endoscopy: Progress and technical challenges. Gastroenterology research and practice, 2012.
  • [25] Vasilakakis, M., Koulaouzidis, A., Marlicz, W., & Iakovidis, D. The future of capsule endoscopy in clinical practice: from diagnostic to therapeutic experimental prototype capsules. Gastroenterology Review/Przegląd Gastroenterologiczny, 15 (2020), (3), 179-193.
  • [26] Karargyris, A., & Koulaouzidis, A. OdoCapsule: next-generation wireless capsule endoscopy with accurate lesion localization and video stabilization capabilities. IEEE Transactions on Biomedical Engineering, 62 (2014), (1), 352- 360.
  • [27] Ghoshal, U. C., & Amornyotin, S. Capsule endoscopy: A new era of gastrointestinal endoscopy (2013), (pp. 75-88). Rijeka, Crotia: InTech.
  • [28] Sliker, L. J., & Ciuti, G. Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert review of medical devices, 11(2014), (6), 649-666.
  • [29] Ciuti, G., Menciassi, A., & Dario, P. Capsule endoscopy: from current achievements to open challenges. IEEE reviews in biomedical engineering, (2011), 4, 59-72.
  • [30] Baptista, V., Marya, N., Singh, A., Rupawala, A., Gondal, B., & Cave, D. R. (2014). Continuing challenges in the diagnosis and management of obscure gastrointestinal bleeding.
  • [31] Jensen, M. D., Brodersen, J. B., & Kjeldsen, J. Capsule endoscopy for the diagnosis and follow up of Crohn’s disease: a comprehensive review of current status. Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology, 30 (2017), (2), 168.
  • [32] Song, H. J., & Shim, K. N. (2016). Current status and future perspectives of capsule endoscopy. Intestinal Research, 14(1), 21.
  • [33] Pennazio, M. Capsule endoscopy. Endoscopy, 37 (2005), (11), 1073-1078.
  • [34] Kwack, W. G., & Lim, Y. J. Current status and research into overcoming limitations of capsule endoscopy. Clinical endoscopy, 49 (2016), (1), 8-15.
  • [35] Mitselos, I. V., Christodoulou, D. K., Katsanos, K. H., & Tsianos, E. V. Role of wireless capsule endoscopy in the follow-up of inflammatory bowel disease. World journal of gastrointestinal endoscopy, 7 (2015), (6), 643.
  • [36] Bao, G., & Pahlavai, K. Motion estimation of the endoscopy capsule using region-based Kernel SVM classifier. In IEEE International Conference on Electro-Information Technology, EIT 2013 (2013, May), (pp. 1-5). IEEE.
  • [37] Marya, N., Karellas, A., Foley, A., Roychowdhury, A., & Cave, D. Computerized 3-dimensional localization of a video capsule in the abdominal cavity: validation by digital radiography. Gastrointestinal endoscopy, 79 (2014), (4), 669-674.
  • [38] Zeising, S., Chen, L., Thalmayer, A., Lübke, M., Fischer, G., & Kirchner, J. Tracking the traveled distance of capsule endoscopes along a gastrointestinal-tract model using differential static magnetic localization. Diagnostics, 12 (2022), (6), 1333.
  • [39] Son, G., Eo, T., An, J., Oh, D. J., Shin, Y., Rha, H., ... & Hwang, D. Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering. Diagnostics, 12 (2022), (8), 1858.
  • [40] Figueiredo, P. N., Figueiredo, I. N., Prasath, S., & Tsai, R. Automatic polyp detection in pillcam colon 2 capsule images and videos: Preliminary feasibility report. Diagnostic and Therapeutic Endoscopy, (2011), 2011.
  • [41] Suman, S., Hussin, F. A., Malik, A. S., Ho, S. H., Hilmi, I., Leow, A. H. R., & Goh, K. L. Feature selection and classification of ulcerated lesions using statistical analysis for WCE images. Applied Sciences, 7 (2017), (10), 1097.
  • [42] Freitas, M., Arieira, C., Carvalho, P. B., Rosa, B., Moreira, M. J., & Cotter, J. Simplify to improve in capsule endoscopy–TOP 100 is a swift and reliable evaluation tool for the small bowel inflammatory activity in Crohn’s disease. Scandinavian Journal of Gastroenterology, 55 (2020), (4), 408-413.
  • [43] Pan, G. B., Xu, F., & Chen, J. L. Bleeding detection in wireless capsule endoscopy using color similarity coefficient. In Applied Mechanics and Materials (2012), (Vol. 195, pp. 307-312). Trans Tech Publications Ltd.
  • [44] Jia, X. Meng MQ. In A deep convolutional neural network for bleeding detection in Wireless Capsule Endoscopy images. Annu Int Conf IEEE Eng Med Biol Soc (2016, August), (Vol. 2016, pp. 639-642).
  • [45] Mascarenhas Saraiva, M., Ferreira, J. P. S., Cardoso, H., Afonso, J., Ribeiro, T., Andrade, P., Parente, M. P. L., Jorge, R. N., & Macedo, G. Artificial intelligence and colon capsule endoscopy: automatic detection of blood in colon capsule endoscopy using a convolutional neural network. Endoscopy International Open, 09 (2021), (08), E1264–E1268. https://doi.org/10.1055/a-1490-8960
  • [46] Becq, A., Rahmi, G., Perrod, G., & Cellier, C. Hemorrhagic angiodysplasia of the digestive tract: pathogenesis, diagnosis, and management. Gastrointestinal endoscopy, 86 (2017), (5), 792-806.
  • [47] Pons-Beltrán, V. Obscure gastrointestinal bleeding and" obscure" capsule. May we switch on any lights?. Revista Espanola de Enfermedades Digestivas: Organo Oficial de la Sociedad Espanola de Patologia Digestiva, 107 (2015), (12), 711-712.
  • [48] Leenhardt, R., Vasseur, P., Li, C., Saurin, J. C., Rahmi, G., Cholet, F., ... & Romain, O. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointestinal endoscopy, 89 (2019), (1), 189- 194.
  • [49] Moradi, M., Falahati, A., Shahbahrami, A., & Zare-Hassanpour, R. Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization. In 2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA) (2015, March), (pp. 1-5). IEEE.
  • [50] Athanasiou, S. A., Sergaki, E. S., Polydorou, A. A., Polydorou, A. A., Stavrakakis, G. S., Afentakis, N. M., ... & Zervakis, M. E. Revealing the Boundaries of Selected Gastro-Intestinal (GI) Organs by Implementing CNNs in Endoscopic Capsule Images. Diagnostics, 13 (2023), (5), 865.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7b546a2-c2e1-4a51-a38f-d9a9f04f3366
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.