Czasopismo
2019
|
Vol. 67, no. 2
|
179--185
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We deal with compact surfaces immersed with flat normal bundle and parallel normalized mean curvature vector field in a space form Qc2+p of constant sectional curvature c ϵ {−1, 0, 1}. Such a surface is called an LW-surface when it satisfies a linear Weingarten condition of the type K = aH + b for some real constants a and b, where H and K denote the mean and Gaussian curvatures, respectively. In this setting, we extend the classical rigidity theorem of Liebmann (1899) showing that a non-flat LW-surface with non-negative Gaussian curvature must be isometric to a totally umbilical round sphere.
Rocznik
Tom
Strony
179--185
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Departamento de Matemática, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, Pernambuco, Brazil, jogli.silva@ufrpe.br
autor
- Departamento de Matemática, Universidade Federal de Campina Grande, 58.429-970 Campina Grande, Paraíba, Brazil, henrique@mat.ufcg.edu.br
Bibliografia
- [1] J. A. Aledo, L. J. Alías and A. Romero, A new proof of Liebmann classical rigidity theorem for surfaces in space forms, Rocky Mountain J. Math. 35, (2005), 1811-1824.
- [2] M. Dajczer, Submanifolds and Isometric Immersions, Math. Lect. Ser. 13, Publish or Perish, Houston, TX, 1990.
- [3] J. Hadamard, Sur certaines propriétés des trajectoires en dynamique, J. Math. Pures Appl. 3 (1897), 331-387.
- [4] D. Koutroufiotis, Two characteristic properties of the sphere, Proc. Amer. Math. Soc. 44 (1974), 176-178.
- [5] H. Liebmann, Eine neue Eigenschaft der Kugel, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1899, 44-55.
- [6] S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech., Harlow, 1991, 279-296.
- [7] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamer. 3 (1987), 447-453.
- [8] A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geom. 27 (1988), 215-220.
- [9] R. Schneider, Closed convex hypersurfaces with second fundamental form of constant curvature, Proc. Amer. Math. Soc. 35 (1972), 230-233.
- [10] U. Simon, Characterizations of the sphere by the curvature of the second fundamental form, Proc. Amer. Math. Soc. 55 (1976), 382-384.
- [11] J. Weingarten, Ueber eine Klasse auf einander abwickelbarer Flächen, J. Reine Angew. Math. 59 (1861), 382-393.
- [12] J. Weingarten, Ueber die Flächen, derer Normalen eine gegebene Fläche berühren, J. Reine Angew. Math. 62 (1863), 61-63.
- [13] D. Yang and Z. Hou, Linear Weingarten spacelike submanifolds in de Sitter space, J. Geom. 103 (2012), 177-190.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7b1935e-203c-45d8-b80c-e1d2c33e1ac9