Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Y. 112, iss. 1-E | 353--362
Tytuł artykułu

IPMSM with SMC rotor – optimization and experimental results

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Maszyna synchroniczna z wirnikiem proszkowym – optymalizacja i wyniki eksperymentalne
Języki publikacji
EN
Abstrakty
EN
The work presented in this paper relates to an Interior Permanent Magnet Synchronous Motor (IPMSM) experimental results and optimization procedure programed in Matlab and Maxwell environments. The stator of the machine is a conventional stator with distributed winding. The subject of the first optimization stage was the geometry of the IPM machine, concerning average torque value maximization and maximum cogging torque value minimization under physical and technological constraints. The optimized rotor core is made of from Magnetic Powder (SMC). It was tested in a generator regime.
PL
Artykuł podejmuje temat badań eksperymentalnych oraz optymalizacji maszyn synchronicznych z magnesami zagnieżdżonymi z wykorzystaniem narzędzi Matlab i Maxwell. Stojan badanej maszyny jest typowym stojanem silnika asynchronicznego klatkowego z uzwojeniem rozłożonym. Dokonano optymalizacji geometrii wirnika maszyny, z uwzględnieniem maksymalizacji wartości średniej momentu elektromagnetycznego i minimalizacji maksymalnej wartości momentu zaczepowego oraz ograniczeń geometrycznych i technologicznych. Zoptymalizowany rdzeń wirnika został wykonany z proszku magnetycznie miękkiego. Zaprojektowaną maszynę przebadano w stanie generatorowym.
Wydawca

Rocznik
Strony
353--362
Opis fizyczny
Bibliogr. 15 poz., wz., il., tab., wykr.
Twórcy
autor
  • Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin
autor
  • Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin
Bibliografia
  • [1] di Barba P., Mognaschi M.E., Industrial design with multiple criteria: shape optimization of a permanent-magnet generator, IEEE Transaction on Magnetics, 2009, Vol. 45, no. 3, pp. 1482–1485.
  • [2] Paplicki P., The new generation of electrical machines applied in hybrid drive car, Electrical Review, 2010, Vol. 86, no. 6, pp. 101–103.
  • [3] May H., Pałka R., Paplicki P., Szkolny S., Wardach M., Comparative research of different structures of a permanent-magnet excited synchronous machine for electric vehicles, Electrical Review, 2012, no. 12a, pp. 53–55.
  • [4] di Barba P., Mognaschi M.E., Pałka R., Paplicki P., Szkolny S., Design optimization of a permanent-magnet excited synchronous machine for electrical automobiles, International Journal of Applied Electromagnetics and Mechanics, IOS Press, 2012, Vol. 39, no. 1–4, pp. 889–895.
  • [5] Stumberger B., Hamler M., Trlep M., Jesenik M., Analysis of Interior Permanent Magnet Synchronous Motor Designed for Flux Weakening Operation, IEEE Transaction on Magnetics, 2001, Vol. 37, no. 5, pp. 3644–3647.
  • [6] Pałka R., Piotuch R., FEM based IPMSM optimization, Problem Issues – Electrical Machines, 2014, Vol. 104, no. 4, pp. 99–104.
  • [7] Paplicki P., Piotuch R., Improved Control System of PM Machine with Extended Field Control Capability for EV Drive, Mechatronics-Ideas for Industrial Application, Springer, part. I, 2015, Vol. 317, pp. 125–132.
  • [8] Putek P., Paplicki P., Pałka R., Topology optimization of rotor poles in a permanent-magnet machine using level set method and continuum design sensitivity analysis, COMPEL, Vol. 33, issue 3, pp. 711–728.
  • [9] Putek P., Slodička M., Paplicki P., Pałka R., Minimization of cogging torque in permanent magnet machines using the topological gradient and adjoint sensitivity in multi-objective design, International Journal of Applied Electromagnetics and Mechanics, 2012, Vol. 39, no. 1–4, pp. 933–940.
  • [10] Putek P., Paplicki P., Slodička M., Pałka R., Van Keer R., Application of topological gradient and continuum sensitivity analysis to the multi-objective design optimization of a permanent-magnet excited synchronous machine, Electrical Review, 2012, Vol. 88, no. 7a, pp. 256–260.
  • [11] Caramia R., Piotuch R., Pałka R., Multiobjective FEM based optimization of BLDC motor using Matlab and Maxwell scripting capabilities, Archives of Electrical Engineering, 2014, Vol. 63(1), pp. 115–124.
  • [12] Putek P., Paplicki P., Pałka R., Low Cogging Torque Design of Permanent Magnet Machine Using Modified Multi-Level Set Method With Total Variation Regularization, IEEE Transaction on Magnetics, 2014, Vol. 50, no. 2, pp. 657–660.
  • [13] Paplicki P., Design optimization of the electrically controlled permanent magnet excited synchronous machine to improve flux control range, Electronika ir electrotechnika, 2014, Vol. 20, no. 10.
  • [14] Deb K., Pratap A., Agarwal S., Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, April 2002, Vol. 6, no. 2.
  • [15] Shchur I., Rusek A., Simulation modelling of synchronous motor with permanent magnets on the base of results of field research, Problem Issues – Electrical Machines, 2013, Vol. 93, no. 3, pp. 189–195.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a7a9ea4e-23e1-48a3-9a00-5bb9d9f12c38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.