Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 4 | 406--417
Tytuł artykułu

Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is mainly focused on the intrinsic fiber parameters and their influence on the mechanical properties of the hybrid composites. Cellulosic fibers are extracted from mesocarp of Cocos nucifera fruit and outer mat of Luffa cylindrica fruit. The inherent fiber parameters such as fiber diameter, lumen diameter, cell wall thickness are observed under light microscope. Micro-fibrillar angle is found using X-ray diffraction technique. Three varieties of hybrid polymer composite samples are fabricated using Cocos nucifera and Luffa cylindrica fibers as reinforcements in the ratio 2:1, 1:1 and 1:2 respectively employing hand layup technique with their combined weight maintained as 30%. Significant response in the Load Vs Deflection curve and mechanical properties of the hybrid composites are found attributing to the difference in the respective weight proportion of the constituent fibers in the hybrid composite system. Results exemplify that the hybrid composite sample comprising Cocos nucifera and Luffa cylindrica fibers in the ratio 1:2 capitulates the maximum flexural strength and impact strength of 31.05 MPa and 14.24 kJ/m2 respectively when compared with other hybrid composites. The reason for the difference in mechanical strength of hybrid composite samples containing two different fibers is found to be related to the built-in architecture and physical characteristics of the constituent fibers. The morphology of the fractured samples are examined and reported. It is concluded that properties of hybrid composites can be tailor made depending upon the requirements either by using the Cocos nucifera fibers to impart ductility or Luffa cylindrica fibers to impart brittleness.
Wydawca

Rocznik
Strony
406--417
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Madurai Institute of Engineering and Technology, Sivagangai District, Pottapalayam, Tamil Nadu, India, bng9@ymail.com
autor
  • Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
Bibliografia
  • [1] Thakur VK, Thakur MK. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym. 2014;109:102–17.
  • [2] Miao C, Hamad WY. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose. 2013;20:2221–62.
  • [3] Madsen B, Gamstedt, EK. Wood versus plant fibers: Similarities and differences in composite applications. Adv Mater Sci Eng. 2013;2013:14.
  • [4] Rytioja J, Hilden K, Yuzon J, Hatakka A, de Vries RP, Makela MR. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev. 2014;78(4):614–49.
  • [5] Bourmaud A, Morvan C, Bouali A, Placet V, Perre P, Baley C. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod. 2013;44:343–51.
  • [6] NagarajaGanesh B, Rekha B. Effect of mercerization on the physico-chemical properties of matured and seasoned Cocos nucifera fibers for making sustainable composites. Mater Res Express. 2019;6:125102.
  • [7] Ganesh BN, Muralikannan R. Comprehensive characterization of lignocellulosic fruit fibers reinforced hybrid polyester composites. Int J Mater Sci Appl. 2016;5:302–7.
  • [8] Jawaid M, Khalil HA, Hassan A, Dungani R, Hadiyane A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos B. 2013;45:619–24.
  • [9] Ganesh BN, Rekha B. A comparative study on tensile behaviour of plant and animal fiber reinforced composites. Int J Innov Appl Stud. 2013;2:645–8.
  • [10] Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES. Effect of fibre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application. Defence Technol. 2016;12(1):52–8.
  • [11] Bakare FO, Ramamoorthy SK, Ĺkesson D, Skrifvars M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos A. 2016;83:176–84.
  • [12] Shukla SR, Pai RS. Comparison of Pb (II) uptake by coir and dye loaded coir fibres in a fixed bed column. J Hazard Mater. 2005;125:147–53.
  • [13] NagarajaGanesh B, Muralikannan R. Physico-chemical, thermal, and flexural characterization of Cocos nucifera fibers. Int J Polym Anal Charact. 2016;21:244–50.
  • [14] Seki Y, Sever K, Erden S, Sarikanat M, Neser G, Ozes C. Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci. 2012;123:2330–7.
  • [15] NagarajaGanesh B, Muralikannan R. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. Int J Polym Anal Charact. 2016;21:259–66.
  • [16] Wheeler EA, Baas P. A survey of the fossil record for Dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA J. 1991;12:275–318.
  • [17] Cave ID. X-ray measurement of microfibril angle. Forest Prod J. 1966;16:37–42.
  • [18] Boyd JD. Interpretation of X-ray diffractograms of wood for assessments of microfibril angles in fibre cell walls. Wood Sci Technol. 1977;11:93–114.
  • [19] Meylan BA. The influence of microfibril angle on the longitudinal shrinkage-moisture content relationship. Wood Sci Technol. 1972;6:293–301.
  • [20] Yamamoto H. Method of determining the mean microfibril angle of wood over a wide range by the improved Cave’s method. Mokuzai Gakkaishi. 1993;39:375–81.
  • [21] Khalil HA, Marliana MM, Alshammari T. Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as curing agent. BioResources. 2011;6(4):5206–23.
  • [22] Sharma M, Sharma CL, Kumar YB. Evaluation of fiber characteristics in some weeds of Arunachal Pradesh, India for pulp and paper making. Res J Agric For Sci. 2013;1:15–211.
  • [23] Agopyan V, Savastano H Jr, John VM, Cincotto MA. Developments on vegetable fibre–cement based materials in Sao Paulo, Brazil: an overview. Cem Concr Compos. 2005;27:527–36.
  • [24] Junior MG, Novack KM, Botaro VR. Anatomical characterization of bamboo fiber (Bambusa vulgaris) for its use in polymer composites. Revista Iberoamericana de polímeros. 2010;11:442–56.
  • [25] Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod. 2004;19:245–54.
  • [26] Tutus A, Deniz I, Eroglu H. Rice straw pulping with oxide added soda-oxygen-anthraquinone. Pak J Biol Sci. 2004;7:1350–4.
  • [27] Hemmasi AH, Ghasemi I, Bazyar B, Samariha A. Studying the effect of size of bagasse and nanoclay particles on mechanical properties and morphology of bagasse flour/recycled polyethylene composites. BioResources. 2013;8:3791–801.
  • [28] Savastano H Jr, Santos SF, Radonjic M, Soboyejo WO. Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem Concr Compos. 2009;31:232–43.
  • [29] Saxena M, Pappu A, Sharma A, Haque R, Wankhede S. Composite materials from natural resources: Recent trends and future potentials. In: Tesinova P, editor. Advances in Composite Materials-Analysis of Natural and Man-Made Materials. Rijeka: Croatia; 2011. p. 121–62.
  • [30] Fonseca AS, Mori FA, Tonoli GH, Junior HS, Ferrari DL, Miranda IP. Properties of an Amazonian vegetable fiber as a potential reinforcing material. Ind Crops Prod. 2013;47:43–50.
  • [31] Affdl JH, Kardos JL. The Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–52.
  • [32] Fidelis ME, Pereira TV, Gomes OD, de Andrade SF, Toledo Filho RD. The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol. 2013;2:149–57.
  • [33] Bardage S, Donaldson L, Tokoh C, Daniel G. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nord Pulp Pap Res J. 2004;19:448–52.
  • [34] Akil H, Omar MF, Mazuki AA, Safiee SZ, Ishak ZM, Bakar AA. Kenaf fiber reinforced composites: a review. Mater Des. 2011;32:4107–21.
  • [35] Nosbi N, Akil HM, Ishak ZM, Bakar AA. Degradation of compressive properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Mater Des. 2010;31:4960–4.
  • [36] NagarajaGanesh B, Ganeshan P, Ramshankar P, Raja K. Assessment of natural cellulosic fibers derived from Senna auriculatafor making light weight industrial biocomposites. Ind Crops Prod. 2019;139:111546.
  • [37] Joseph PV, Mathew G, Joseph K, Groeninckx G, Thomas S. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos A. 2003;34:275–90.
  • [38] Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S. A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol. 2007;67:453–61.
  • [39] Weatherhead RG. Catalysts accelerators and inhibitors for unsaturated polyester resins. InFRP Technology. Dordrecht: Springer; 1980. p. 204–239.
  • [40] Shesan OJ, Stephen AC, Chioma AG, Neerish R, Rotimi SE. Fiber-Matrix Relationship for Composites Preparation. In: Antonio B. Pereira and Fabio A.O. Fernandes, editors. Renewable and Sustainable Composites. London: 2019. p. 1–30.
  • [41] Yoganandam K, Ganeshan P, NagarajaGanesh B, Raja K. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. J Nat Fibers. 2019;21:1–13.
  • [42] NagarajaGanesh B, Sugumaran P, Sridhar R. Mechanical properties of rice straw and chicken feather fibers. Int J Compos Mater Manuf. 2012;2:22–6.
  • [43] NagarajaGanesh B, Rekha B. Morphology and damage mechanism of lignocellulosic fruit fibers reinforced polymer composites: a comparative study. SN Appl Sci. 2019;1:1250.
  • [44] Jarukumjorn K, Suppakarn N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Compos B. 2009;40:623–7.
  • [45] Yoganandam K, NagarajaGanesh B, Ganeshan P, Raja K. Thermogravimetric analysis of Calotropis procera fibers and their influence on the thermal conductivity and flammability studies of polymer composites. Mater Res Express. 2019;28:105341.
  • [46] Mohanta N, Acharya SK. Tensile, flexural and interlaminar shear properties of Luffa cylindrica fibre reinforced epoxy composites. Int J Macromol Sci. 2013;3:6–10.
  • [47] Boopalan M, Niranjanaa M, Umapathy MJ. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B. 2013;51:54–7.
  • [48] Thomason JL. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos Part A. 2002;33:1641–52.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a798cf7f-76b5-4f32-8820-c7037f644d53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.