Warianty tytułu
Języki publikacji
Abstrakty
The aluminium industry for ship materials produces waste material that can pollute the environment. To protect the environment from material pollution, the aluminium waste recycling process can be used to develop ship material. This study aims to analyze the physical and mechanical characteristics of aluminium with magnesium, copper, and zinc addition. Several tests, such as chemical composition, tensile, and impact tests, will be conducted to ascertain the mechanical properties of aluminium alloy. Adding alloy material in the range of 0-10% resulted in various alloy element compositions. It can be analyzed that the aluminium contents decreased with the increase of alloy elements. The highest rise in alloy elements can be found in the addition of magnesium than in copper and zinc addition. Moreover, the mechanical tests showed that aluminium casting with magnesium, copper, and zinc additions influenced the mechanical properties of the aluminium alloy. It can be found that tensile strength and modulus of elasticity values improved with the increase of alloy addition. The addition of magnesium has better tensile properties than the addition of copper and zinc. In contrast, the impact resistance decreased with the addition of magnesium, making the alloy more brittle.
Rocznik
Tom
Strony
401--408
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Diponegoro University, Semarang, Java, Indonesia
autor
- Universitas Diponegoro, Semarang, Indonesia
autor
- Universitas Diponegoro, Semarang, Indonesia
autor
- Universitas Diponegoro, Semarang, Indonesia
autor
- Universitas Diponegoro, Semarang, Indonesia
autor
- Universitas Diponegoro, Semarang, Indonesia
autor
- Nadiyas Juneva
Bibliografia
- [1] E. Sutrisno, “Indonesia Menuju Industri Aluminium Berdikari,” Indonesia.go.id, Jakarta, Apr. 20, (2022). Accessed: May 27, 2023. [Online]. Available: https://indonesia.go.id/kategori/editorial/4681/indonesia ‐menuju‐industri‐alumunium‐berdikari?lang=1.
- [2] A. Budiarto and A. Purwanto, “Pemanfaatan serutan karet ban bekas sebagai subtitusi pasir silika pada CLC (cellular lightweight concrete),” Jurnal Riset Teknologi Pencegahan Pencemaran Industri, vol. 7, no. 1, pp. 23– 30, (2020), doi: 10.21771/jrtppi.2016.v7.no1.p23‐30.
- [3] S. K. Das, “Designing Aluminum Alloys for a Recycling Friendly World,” Materials Science Forum, vol. 519, no. 521, pp. 1239–1244. (2006), Available: http://www.scientific.net.
- [4] S. Sun, B. Yuan, and M. Liu, “Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr‐modified A356 aluminum casting alloy,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 8, pp. 1884–1890, (2012), doi: https://doi.org/10.1016/S1003‐6326(11)61402‐7.
- [5] T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminium alloys,” Materials & Design (1980‐2015), vol. 56, pp. 862–871. (2014), doi: https://doi.org/10.1016/j.matdes.2013.12.002.
- [6] J. Rams and B. Torres, “Casting aluminum alloys,” in Encyclopedia of Materials: Metals and Alloys, F. G. Caballero, Ed., Oxford: Elsevier, pp. 123–131, (2022), doi: https://doi.org/10.1016/B978‐0‐12‐819726‐4.00087‐9.
- [7] G. E. Totten and D. S. MacKenzie, Handbook of Aluminum: Volume 2: Alloy production and materials manufacturing, 1st ed., vol. 2. CRC Press, (2003), doi: 10.1201/9780203912607.
- [8] V. S. Zolotorevsky, N. Belov, and M. Glazoff, Casting aluminum alloys. Amsterdam: Elsevier, (2007), doi: 10.1016/B978‐0‐08‐045370‐5.X5001‐9.
- [9] C. M. Cepeda‐Jiménez, J. M. García‐Infanta, M. Pozuelo, O. A. Ruano, and F. Carreño, “Impact toughness improvement of high‐strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding,” Scripta Materialia, vol. 61, no. 4, pp. 407–410, (2009), doi: https://doi.org/10.1016/j.scriptamat.2009.04.030.
- [10] R. Jayaganthan, H.‐G. Brokmeier, B. Schwebke, and S. K. Panigrahi, “Microstructure and texture evolution in cryorolled Al 7075 alloy,” Journal of Alloys and Compounds, vol. 496, no. 1, pp. 183–188, (2010), doi: https://doi.org/10.1016/j.jallcom.2010.02.111.
- [11] V. Farajkhah and Y. Liu, “Effect of fabrication methods on the ultimate strength of aluminum hull girders,” Ocean Engineering, vol. 114, pp. 269–279, (2016), doi: https://doi.org/10.1016/j.oceaneng.2016.01.029.
- [12] O. F. Hosseinabadi and M. R. Khedmati, “A review on ultimate strength of aluminium structural elements and systems for marine applications,” Ocean Engineering, vol. 232, p. 109153, (2021), doi: https://doi.org/10.1016/j.oceaneng.2021.109153.
- [13] L. F. Mondolfo, “Al–Mg Aluminum–Magnesium system,” in Aluminum Alloys, L. F. Mondolfo, Ed., Butterworth‐Heinemann, pp. 311–323, (1976), doi: https://doi.org/10.1016/B978‐0‐408‐70932‐3.50053‐X.
- [14] R. Bagus and S. Majanasastra, “Analisis sifat mekanik dan struktur mikro hasil proses hydroforming pada material tembaga (Cu) C84800 dan aluminium Al 6063,” (2016). [Online]. Available: http://ejournal‐unisma.net.
- [15] H. Sudjana, Teknik pengecoran logam. Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan, (2008).
- [16] H. N. Girisha and K. V. Sharma, “Effect of magnesium on strength and microstructure of Aluminium Copper Magnesium Alloy,” Int J Sci Eng Res, vol. 3, no. 2, pp. 3–6, (2012).
- [17] M. Yıldırım and D. Özyürek, “The effects of Mg amount on the microstructure and mechanical properties of Al– Si–Mg alloys,” Mater Des, vol. 51, pp. 767–774, (2013), doi: https://doi.org/10.1016/j.matdes.2013.04.089.
- [18] M. Abdus Shomad and A. Adam Jordianshah, “Pengaruh penambahan unsur magnesium pada paduan aluminium dari bahan piston bekas,” Teknoin , vol. 26, no. 1, pp. 75–82, (2020).
- [19] A. Indra Wardana and Mahadi, “Pengaruhpenambahan variasi magnesium (Mg) terhadap sifatmekanik coran alumunium (Al) alloy dengan menggunakan metode cetakan pasir,” Jurnal Dinamis,vol. 9, no. 1, pp. 2809–3410, (2021), [Online]. Available: https://talenta.usu.ac.id/dinamis.
- [20] I. Setia, B. Harjanto, and Subagsono, “Analisis pengaruh penambahan unsur magnesium (Mg) 2% dan 5% terhadap ketangguhan impak, tingkat kekerasan dan struktur mikro pada velg aluminium (Al‐5,68 Si),” Jurnal Nosel, vol. 4, no. 3, (2016).
- [21] T. Bogdanoff and J. Dahlström, “The influence of copper on an Al‐Si‐Mg alloy (A356) ‐ Microstructure and mechanical properties,” Bachelor Thesis, (2009).
- [22] S. Bahl, X. Hu, E. Hoar, J. Cheng, J. A. Haynes, and A. Shyam, “Effect of copper content on the tensile elongation of Al–Cu–Mn–Zr alloys: Experiments and finite element simulations,” Materials Science and Engineering: A, vol. 772, p. 138801, (2020), doi: https://doi.org/10.1016/j.msea.2019.138801.
- [23] L. Yuan, L. Peng, J. Han, B. Liu, Y. Wu, and J. Chen, “Effect of Cu addition on microstructures and tensile properties of high‐pressure die‐casting Al‐5.5Mg‐0.7Mn alloy,” J Mater Sci Technol, vol. 35, (2018), doi: 10.1016/j.jmst.2018.11.024.
- [24] G. D. P. S. Soleh, “Pengaruh sifat fisik dan mekanikhasil pengecoran aluminium silikon dan campuran Zndaur ulang,” University of Muhammadiyah Malang, (2019).
- [25] H. M. Unggul, H. Ardhyananta, and A. T. Wibisono, “Analisis pengaruh komposisi aluminium (al) terhadap struktur mikro, kekerasan dan laju korosi anoda tumbal berbasis seng (Zn) untuk kapal dengan metode pengecoran,” Jurnal Teknik ITS, vol. 7, no. 2, (2018).
- [26] ASTM International, “B557‐15:ʺStandard test methods for tension testing wrought and cast aluminum and magnesium alloy productsʺ,” (2010).
- [27] G. E. (George E. Dieter, Mechanical metallurgy. in McGraw‐Hill series in materials science and engineering. New York: McGraw‐Hill, 1976.
- [28] ASTM International, “E23−16b:ʺStandard test methods for notched bar impact testing of metallic materialsʺ, (2016). doi: 10.1520/E0023‐16B.
- [29] G. LI et al., “Semi‐solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China,” Transactions of Nonferrous Metals Society of China, vol. 31, no. 11, pp. 3255–3280, (2021), doi: https://doi.org/10.1016/S1003‐6326(21)65729‐1.
- [30] ASTM International, “ASTM E1251 − 17a: Standard test method for analysis of aluminum and aluminum alloys by spark atomic emission spectrometry,” (2015).
- [31] A. Garg and J. M. Howe, “Grain‐boundary precipitation in an Al 4.0‐Cu 0.5‐Mg 0.5‐Ag alloy,” Acta Metallurgica et Materialia, vol. 40, no. 9, pp. 2451–2462, (1992), doi: https://doi.org/10.1016/0956‐7151(92)90163‐9.
- [32] T. Abbott, C. Cáceres, and M. Easton, “Design with Magnesium: Alloys, properties and casting processes,”,pp. 487–538, (2004).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a74ba91c-6a14-425f-bec7-db1d4335dda2