Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 27, Fasc. 2 | 275--302
Tytuł artykułu

Asymptotic distribution of unbiased linear estimators in the presence of heavy-tailed stochastic regressors and residuals

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under the symmetric а-stable distributional assumption for the disturbances, Blattberg and Sargent [3] consider unbiased line- ar estimators for a regression model with non-stochastic regressors. We study both the rate of convergence to the true value and the asymptotic distribution of the normalized error of the linear unbiased estimators. By doing this, we allow the regressors to be stochastic and disturbances to be heavy-tailed with either finite or infinite variances, where the tail-thickness parameters of the regressors and disturbances may be different.
Wydawca

Rocznik
Strony
275--302
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • School of Operations Research and Industrial Engineering and Cornell University Ithaca, NY 14853, USA, gennady@orie.cornell.edu
  • Svetlozar T. Rachev Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Kollegium am Schloss, D-76128 Karlsruhe, Germany, rachev@pstat.ucsb.edu
autor
Bibliografia
  • [1] L. Bachelier, Theorie de la speculation, Ann. Sei. Ecole Norm. Sup. III-17 (1900), pp. 21-86. Translated in: The Random Character of Stock Market Prices, P.H. Cootner (Ed.), MIT Press, Cambridge 1964, pp. 17-78.
  • [2] P. Billingsley, Convergence of Probability Measures, 2nd edition, Wiley, New York 1999.
  • [3] R. Blattberg and T. Sargent, Regression with non-Gaussian stable disturbances: some sampling results, Econometrica 39 (1971), pp. 501-510.
  • [4] D. Cline, Convolutions tails, product tails and domain of attraction, Probab. Theory Related Fields 72 (1986), pp. 529-557.
  • [5] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin 1997.
  • [6] E. Fama, The behavior of stock market prices, Journal of Business 38 (1965), pp. 34-105.
  • [7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, 1st edition, Wiley, New York 1966.
  • [8] S. Kwapień and W. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston 1992.
  • [9] R. Laha and Y. Rohatgi, Probability Theory, Wiley, New York 1979.
  • [10] B. Mandelbrot, The variation of certain speculative prices, Journal of Business 26 (1963), pp. 394-419.
  • [11] S. Rachev, J.-R. Kim and S. Mittnik, Stable Paretian econometrics, Parts I and II, Math. Sci. 24 (1999), pp. 24-25 and pp. 113-127.
  • [12] S. Rachev and S. Mittnik, Stable Paretian Models in Finance, Wiley, 2000.
  • [13] S. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York
  • [14] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York 1994.
  • [15] Y. Zolotarev, One-dimensional Stable Distributions, Transí. Math. Monogr., Vol. 65, 1986, American Mathematical Society. Translation from the original 1983 Russian edition.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a6e02c06-ce6c-466c-a7e0-2a8e87451f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.