Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 67 | 35--48
Tytuł artykułu

On I-convergence of complex uncertain sequences

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce convergence concepts namely, I-convergence almost surely, I-convergence in measure, I-convergence in mean, I-convergence in distribution in complex uncertain theory using an ideal I. Also investigate some relationship among them.
Wydawca

Rocznik
Tom
Strony
35--48
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India, mit2905halder@gmail.com
autor
  • Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India, shyamalnitamath@gmail.com
Bibliografia
  • [1] Chen X., Ning X., Wang X., Convergence of complex uncertain sequences, J. Intell. Fuzzy Syst., 30(6) (2016), 3357-3366.
  • [2] Conor J. S., The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63.
  • [3] Das B., Tripathy B. C., Debnath P., Bhattacharya B., Almost convergence of complex uncertain double sequences, Filomat, 35(1) (2021), 61-78.
  • [4] Debnath S., Das B., Statistical convergence of order α for complex uncertain sequences, J. Uncertain Syst., 14(2) (2021), doi:10.1142/S1752890921500124.
  • [5] On Rough Convergence of Complex Uncertain Sequences J. Uncertain Syst. 14(4) (2021), doi:10.1142/S1752890921500215.
  • [6] Esi A., Debnath S., Saha S., Asymptotically double λ2-statistically equivalent sequences of interval numbers, Mathematica, 62(85) (2020), 39-46.
  • [7] Fast H., Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
  • [8] Freedman A. R., Sember J. J., Raphael M., Some Cesàro-type summability spaces, Proc. Lond. Math. Soc., 3(3) (1978), 508-520.
  • [9] Fridy J. A., On statistically convergence, Analysis, 5 (1985), 301-313.
  • [10] Kadak U., Mohiuddine S. A., Generalized statistically almost convergence based on the difference operator which includes the (p, q)-gamma function and related approximation theorems, Results Math., (2018), 73:9.
  • [11] Khan V. A., Khan I. A., Hazarika B., Rahman Z., Strongly I-deferred Cesàro summablity and μ-deferred I-statistically convergence in amenable semigroups, Filomat, 36(14) (2022), 4839-4856.
  • [12] Khan V. A., Hazarika B., Khan I. A., Rahman Z., A study on I-deferred strongly Cesàro summable and μ-deferred I-statistical convergence for complex uncertain sequences, Filomat, 36(20) (2022), 7001-7020.
  • [13] Khan V. A., Hazarika B., Khan I. A., Tuba U., I-deferred strongly Cesàro summable and μ-deferred I-statistically convergent sequence spaces, Ricerche Mat., (2021), doi:10.1007/s11587-021-00619-8.
  • [14] Kişi Ö., Sλ(I)-convergence of complex uncertain sequences, Mat. Stud., 51(2) (2019), 183-194.
  • [15] Kostyrko P., Mačaj M., Sleziak M., Šalát T., I-convergence, Real Anal. Exchange, 26 (2000/2001), 669-686.
  • [16] Liu B., Uncertainty Theory, 4th edition, Springer-Verlag, Berlin, doi:10.1007/978-3-662-44354-5.
  • [17] Mohiuddine S. A., Asiri A., Hazarika B., Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48(5) (2019), 492-506.
  • [18] Mohiuddine S. A., Hazarika B., Alghamdi M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorem, Filomat, 33(14) (2019), 4549-4560.
  • [19] Mohiuddine S. A., Alamri B. A. S., Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM, 113(3) (2019), 1955-1973.
  • [20] Mursaleen M., Debnath S., Rakshit D., I-statistical limit superior and I-statistical limit inferior, Filomat, 31(7) (2018), 2103-2108.
  • [21] Nath P. K., Tripathy B. C., IK-convergence, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 46(1) (2019), 139-149.
  • [22] Peng Z., Complex uncertain variable, Doctoral Dissertation, Tsinghua University.
  • [23] Roy S., Tripathy B. C., Saha S., Some results on p-distance and sequence of complex uncertian variables, Commun. Korean. Math. Soc., 35(3) (2020), 907-916.
  • [24] Saha S., Tripathy B. C., Roy S., On almost convergence of complex uncertain sequences, New Math. Nat. Comput., 16(3) (2020), 573-580.
  • [25] Savas E., Debnath S., On lacunary statistically ϕ-convergence, Note Di Matematica, 39(2) (2019), 111-120.
  • [26] Savas E., Debnath S., Rakshit D., On I-statistically rough convergence, Publications de l’Institut Mathmatique, 105(119) (2019), 145-150.
  • [27] Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73-74.
  • [28] Tripathy B. C., Tripathy B. K., On I-convergent double sequences, Soochow J. Math., 31(4)(2005), 549-560.
  • [29] Tripathy B. C., Nath P. K., Statistical convergence of complex uncertain sequences, New Math. Nat. Comput., 13(3) (2017), 359-374.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a6dd80fd-c304-4ec6-bc86-4984cddaf11b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.