Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 36 | 97--111
Tytuł artykułu

Environmental factors affecting splash erosion in the mountain area (the Western Polish Carpathians)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to examine the effects of various environmental factors on splash erosion based on the funnel method under natural conditions. The relationship between splash and wash erosion were also studied. The intermediate timescale study (2012–2016, from May to October) was conducted in the Western Polish Carpathians where Inceptisols predominate. The splash erosion rate (kg m−2) was variable and showed a strong correlation with environmental factors, including rainfall parameters, land use (black fallow, meadow), slope gradient (0°, 11°), and also the particle size of soil and usage time (organic matter content, OM). The splash erosion rate on the slope with black fallow was 95 times higher than in the meadow and up to 20 times higher than in flat area. The average downslope splash erosion was 75% higher than the upslope splash erosion, and the soil particles were detached to maximum heights of 50 cm (downslope). There was a positive correlation between splash erosion and wash and a negative correlation between splash erosion and OM.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
Strony
97--111
Opis fizyczny
Bibliogr. 83 poz., rys.
Twórcy
  • Research Station in Szymbark, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Poland
  • Research Station in Szymbark, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Poland
Bibliografia
  • Adamczyk B., Maciaszek W., Januszek K., 1973. Gleby gromady Szymbark i jej wartość użytkowa. Dokumentacja Geograficzna 1: 16–66.
  • Affek A.N., Zachwatowicz M., Sosnowska A., Gerlée A., Kiszka K., 2017. Impacts of modern mechanised skidding on the natural and cultural heritage of the Polish Carpathian Mountains. Forest Ecology and Management 405: 391–403. DOI: https://doi.org/10.1016/j.foreco.2017.09.047.
  • Barai V.N., Satpute G.U., Atre A.A., 2018. Effect of Rainfall Intensity on Directional Splash Erosion in Clay Loam Soil under Simulated Condition. International Journal of Bio-Resource & Stress Management 9(1):13–16. DOI: https://doi.org/10.23910/ijbsm/2018.9.1.3c0115
  • Beczek M., Ryżak M., Lamorski K., Sochan A., Mazur R., Bieganowski A., 2018. Application of X-ray computed microtomography to soil craters formed by raindrop splash. Geomorphology 303: 357–361. DOI: https://doi.org/10.1016/j.geomorph.2017.12.019.
  • Bochenek W., Gil E., 2010. Zróżnicowanie spływu powierzchniowego i spłukiwania gleby na poletkach doświadczalnych o różnej długości (Szymbark, Beskid Niski). Prace i Studia Geograficzne 45: 265–278.
  • Bochet E., Poesen J., Rubio J.L., 2002. Influence of plant morphology on splash erosion in a Mediterranean matorral. Zeitschrift für Geomorphologie 46(2): 223–243. DOI: https://doi. org/10.1127/zfg/46/2002/223.
  • Bradford J.M., Huang C.H., 1992. Mechanisms of crust formation: physical components. In: M.E. Summer, B.A. Stewart (eds), Soil Crusting: Chemical and Physical Processes. Lewis Publishing, Boca Raton. Brandolini P., Pepe G., Capolongo D., Cappadonia C., Cevasco A., Conoscenti C., Marsico A., Vergari F., Del Monte M., 2018.
  • Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degradation & Development 29(9): 3050–3068. DOI: https://doi.org/10.1002/ldr.2999.
  • Brant V., Kroulik M., Pivec J., Zabransky P., Hakl J., Holec J., Kviz Z., Prochazka L., 2017. Splash Erosion in Maize Crops under Conservation Management in Combination with Shallow Strip-tillage before Sowing. Soil and Water Research 12(2):106–116. DOI: https://doi.org/10.17221/147/2015-SWR.
  • Brown L.C., Foster G.R., 1987. Storm erosivity using idealized intensity distributions. Transactions of the ASAE 30(2): 379–386.DOI: https://doi.org/10.13031/2013.31957.
  • Bryndal T., Franczak P., Kroczak R., Cabaj W., Kołodziej A., 2017. The impact of extreme rainfall and flash floods on the flood risk management process and geomorphological changes in small Carpathian catchments: a case study of the Kasiniczanka river (Outer Carpathians, Poland). Natural Hazards 88(1): 95–120.DOI: https://doi.org/10.1007/s11069-017-2858-7.
  • Bucała-Hrabia A., 2017. Long-term impact of socio-economic changes on agricultural land use in the Polish Carpathians. Land Use Policy 64: 391–404. DOI: https://doi.org/10.1016/j.landusepol.2017.03.013.
  • Cammeraat L.H., 2002. A review of two strongly contrasting geomorphological systems within the context of scale. EarthSurface Processes and Landforms 27(11): 1201–1222. DOI:https://doi.org/10.1002/esp.421.
  • Caron J., Espindola C.R., Angers D.A., 1996. Soil structural stability during rapid wetting: influence of land use on some aggregate properties. Soil Science Socciety of America Journal 60(3): 901–908.
  • Cerdan O., Govers G., Le Bissonnais Y., Van Oost K., Poesen J., Saby N., Gabin A., Vacc A., Quinton J., Auerswald K., Kiks A., Kwaad J.P.M., Raclot D., Ionita I., Rejman J., Rousseva S., Muxart T., Roxo M.J., Dostal T., 2010. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1–2): 167–177. DOI: https://doi.org/10.1016/j.geomorph.2010.06.011.
  • Chmielowiec S., 1977. Bombardująca działalność kropel deszczu i jej rola w modelowaniu stoków Pogórza. MS, Instytut Geografii Uniwersystetu Jagiellońskiego.
  • Defersha M.B., Melesse A.M., 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena 90: 47–52. DOI:https://doi.org/10.1016/j.catena.2011.11.002.
  • Drewnik M., Musielok Ł., Stolarczyk M., Mitka J., Gus M., 2016 Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. Catena 147: 167–176. DOI: https://doi.org/10.1016/j.catena.2016.07.014.
  • Ekwue E.I., 1991. The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technology 4(3): 197–207. DOI: https://doi.org/10.1016/0933-3630(91)90001-4.
  • Fernández-Raga M., Fraile R., Keizer J.J., Tiejiero M.E.V., Castro A., Palencia C., Calvo A.I., Koenders J., Marques R., 2010. The kinetic energy of rain measured with an optical disdrometer: an application to splash erosion. Atmospheric Research 96: 225–240. DOI: https://doi.org/10.1016/j.atmosres.2009.07.013.
  • Fernández-Raga M., Palencia C., Keesstra S., Jordán A., Fraile R., Angulo-Martínez M., Cerdà A., 2017. Splash erosion: A review with unanswered questions. Earth-Science Reviews 171: 463–477. DOI: https://doi.org/10.1016/j.earscirev.2017.06.009
  • Froehlich W., Słupik J., 1980. Importance of splash in erosion process within a small flysch catchment basin. Studia Geomorphologica Carpatho-Balcanica 14: 77–112.
  • Fu Y., Li G.L., Zheng T.H., Li B.Q., Zhang T., 2017. Splash detachment and transport of loess aggregate fragments by raindrop action. Catena 150: 154–160. DOI: https://doi.org/10.1016/j.catena.2016.11.021.
  • Gerlach T., 1976a. Bombardująca działalność kropel deszczu i jej znaczenie w przemieszczaniu gleby na stokach. Studia Geomorphologica Carpatho-Balcanica 10: 125–137.
  • Gerlach T., 1976b. Współczesny rozwój stoków w polskich Karpatach fliszowych. Prace Geograficzne PAN, 122: 1–116.
  • Ghahramani A., Ishikawa Y., Gomi T., Shirak K., Miyata S., 2011. Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena 85(1): 34–47. DOI: https://doi.org/10.1016/j.catena.2010.11.005.
  • Ghahramani A., Yoshiharu I., Mudd S.M., 2012. Field experiments constraining the probability distribution of particle travel distances during natural rainstorms on different slope gradients. Earth Surface Processes and Landforms 37(5): 473–485. DOI:https://doi.org/10.1002/esp.2253.
  • Gil E., 1976. Spłukiwanie gleby na stokach fliszowych w rejonie Szymbarku (Slopewash on flysch slopes in the region of Szymbark). Dokumentacja Geograficzna 2: 1–163.
  • Gil E., 2009. Extreme values of soil downwash on cultivated slopes in the Polish Flysch Carpathians. In: W. Bochenek, M. Kijowska (eds), The operation of the natural environment during economic transformations in Poland IEMP 191–218.
  • Gyssels G., Poesen J., Bochet E., Li Y., 2005. Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography 29(2): 189–217. DOI: https://doi.org/10.1191/0309133305pp443ra.
  • Kijowska-Strugała M., 2019. Sediment variability in a small catchment of the Polish Western Carpathians during transition from centrally planned to free-market economics. Geomorphology 325: 119–129. DOI: https://doi.org/10.1016/j.geomorph.2018.10.008.
  • Kijowska-Strugała M., Bucała-Hrabia A., Demczuk P., 2018. Longterm impact of land use changes on soil erosion in an agricultural catchment (in the Western Polish Carpathians). Land Degradation & Development 29: 1871–1884. DOI: https://doi.org/10.1002/ldr.2936.
  • Kijowska-Strugała M., Demczuk P., 2015. Impact of land use changes on soil erosion and deposition in a small Polish Carpathians catchment in last 40 years. Carpathian Journal of Earth and Environmental Sciences 10(2): 261–270.
  • Kijowska-Strugała M., Kiszka K., 2014. Ocena wielkości rozbryzgu gleby na stoku pogórskim (Karpaty fliszowe, zlewnia Bystrzanki). Annales Universitatis Mariae Curie-Skłodowska Sectio B: Geographia, Geologia, Mineralogia et Petrographia 69(2): 79–95.
  • Kijowska-Strugała M., Wiejaczka Ł., Gil E., Bochenek W., Kiszka K., 2017. The impact of extreme hydro-meteorological events on the transformation of mountain river channels (Polish Flysch Carpathians). Zeitschrift für Geomorphology 61(1): 75–89. DOI: https://doi.org/10.1127/zfg/2017/0434.
  • Kozak J., 2010. Forest cover changes and their drivers in the Polish Carpathian Mountains since 1800. In: H. Nagendra, J. Southworth (eds), Reforesting Landscapes. Landscape Series, Springer, Dordrecht 10: 253–273. DOI: https://doi.org/10.1007/978-1-4020-9656-3_11.
  • Köppen W., 1931. Grundriss der Klimakunde Berlin, Walter de Gruyter.
  • Kroczak R., Bryndal T., 2017. Use of digital terrain models to generate the surface drainage network functioning during heavy rainfall. Methodological aspects based on the Zalasówka catchment (Ciężkowickie foothills). Przegląd Geograficzny 89(1): 67–85.
  • Legout C., Leguédois S., Le Bissonnais Y., Malam-Issa O., 2005. Splash distance and size distributions for various soils. Geoderma 124: 279–292. DOI: https://doi.org/10.1016/j.geoderma.2004.05.006.
  • Li C., Grayson R., Holden J., Li P., 2018a. Erosion in peatlands: Recent research progress and future directions. Earth-Science Reviews 185: 870–886. DOI: https://doi.org/10.1016/j.earscirev.2018.08.005.
  • Li C., Holden J., Grayson R., 2018b. Effects of rainfall, overland flow and their interactions on peatland interrill erosion processes. Earth Surface Processes and Landforms 43(7): 1451–1464. DOI: https://doi.org/10.1002/esp.4328.
  • Liu D., She D., Yu S., Shao G., Chen D., 2015. Rainfall intensity and slope gradient effects on sediment losses and splash from a saline-sodic soil under coastal reclamation. Catena 128: 54–62.DOI: https://doi.org/10.1016/j.catena.2015.01.022.
  • Ma B., Yu X., Ma F., Li Z., Wu F., 2014. Effects of crop canopies on rain splash detachment. Plos One 9(7): e99717. DOI: https://doi.org/10.1371/journal.pone.0099717.
  • Mahmoodabadi M., Sajjadi S.A., 2016. Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion.Geomorphology 253: 159–167. DOI: https://doi.org/10.1016/j.geomorph.2015.10.010.
  • Martínez-Casasnovas J.A., Sánchez-Bosch I., 2000. Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès–Anoia vineyard region (NE Spain). Soil & Tillage Research 57(1–2): 101–106. DOI: https://doi.org/10.1016/S0167-1987(00)00142-2.
  • Marzen M., Iserloh T., Casper M.C., Ries J.B., 2015. Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 127: 135–141. DOI: https://doi.org/10.1016/j.catena.2014.12.023.
  • Marzen M., Iserloh T., de Lima J.L., Fister W., Ries J.B., 2017. Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Science of the Total Environment 590: 502–513.DOI: https://doi.org/10.1016/j.scitotenv.2017.02.190.
  • Mermut A.R., Luk S.H., Römkens M.J.M., Poesen J.W.A., 1997. Soil loss by splash and wash during rainfall from two loess soils. Geoderma 75(3–4): 203–214. DOI: https://doi.org/10.1016/S0016-7061(96)00091-2.
  • Moghadam B.K., Jabarifar M., Bagheri M., Shahbazi E., 2015. Effects of land use change on soil splash erosion in the semi-arid region of Iran. Geoderma 241: 210–220. DOI: https://doi. org/10.1016/j.geoderma.2014.11.025.
  • Nanko K., Mizugaki S., Onda Y., 2008. Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena 72(3): 348–361. DOI: https://doi.org/10.1016/j.catena.2007.07.002.
  • Qinjuan C., Qiangguo C., Wenjun M., 2008. Comparative study on rain splash erosion of representative soils in China. Chinese Geographical Science 18(2): 155–161. DOI: https://doi. org/10.1007/s11769-008-0155-9.
  • Parlak M., Parlak A.Ö., 2010. Measurement of splash erosion in different cover crops. Turkish Journal of Field Crops 15(2):169–173.
  • Perović V., Jakšić D., Jaramaz D., Koković N., Čakmak D., Mitrović M., Pavlović P., 2018. Spatio-temporal analysis of land use/land cover change and its effects on soil erosion (Case study in the Oplenac wine-producing area, Serbia). Environmental Monitoring and Assessment 190(11): 675. DOI: https://doi.org/10.1007/s10661-018-7025-4.
  • Poesen J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43(1): 64–84. DOI:https://doi.org/10.1002/esp.4250.
  • Poesen J., Savat J., 1981. Detachment and transportation of loose sediments by raindrop splash Part 2: Detachability and transportability measurements. Catena 8: 19–41. DOI: https://doi.org/10.1016/S0341-8162(81)80002-1.
  • Rejman J., 2006. Wpływ erozji wodnej i uprawowej na przekształcenie gleb i stoków lessowych. Acta Agrophysica 136 (3): 1–91.
  • Rejman J., Michiels P., Cadron W., Gabriels D., Dębicki R., 1990. Splash detachment on a silt loam soil with and without a plant cover of triticale. Zeszyty Problemowe Postępów Nauk Rolniczych 388: 161–168.
  • Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE) US Department of Agriculture, Agriculture Handbook, 703.
  • Ryżak M., Bieganowski A., Polakowski C., 2015. Effect of soil moisture content on the splash phenomenon reproducibility. Plos One 10(3): e0119269. DOI: https://doi.org/10.1371/journal.pone.0119269.
  • Sadeghi S.H., Harchegani M.K., Asadi H., 2017. Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slopes. Geoderma 290: 100–106. DOI: https://doi.org/10.1016/j.geoderma.2016.12.007.
  • Saedi T., Shorafa M., Gorji M., Khalili Moghadam B., 2016. Indirect and direct effects of soil properties on soil splash erosion rate in calcareous soils of the central Zagross, Iran: A laboratory study. Geoderma 271: 1–9. DOI: https://doi.org/10.1016/j.geoderma.2016.02.008.
  • Schmidt J., Werner M.V., Schindewolf M., 2017. Wind effects on soil erosion by water—A sensitivity analysis using model simulations on catchment scale. Catena 148: 168–175. DOI: https://doi.org/10.1016/j.catena.2016.03.035.
  • Sharma P.P., Gupta S.C., Foster G.R., 1995. Raindrop-induced soil detachment and sediment transport from interrill areas. Soil Science Society of America Journal 59: 727–734. DOI: https://doi.org/10.2136/sssaj1995.03615995005900030014x.
  • Skiba S., Drewnik M., 2003. Mapa gleb obszaru Karpat w granicach Polski. Roczniki Bieszczadzkie 11: 15–20.
  • Słupik J., 1973. Zróżnicowanie spływu powierzchniowego na fliszowych stokach górskich. Dokumentacja Geograficzna 2: 1–118.
  • Soil Science Division Staff. 2017. Soil survey manual. C.Ditzler, K.Scheffe, H.C.Monger (eds), USDA Handbook 18, Government Printing Office, Washington, D.C. Szpikowski J., 2001. Wzajemne relacje rozbryzgu i spłukiwania jako przejaw zmienności erozji wodnej gleb na stokach o zróżnicowanym użytkowaniu rolniczym (Zlewnia Chwalimskiego Potoku, Górna Parsęta). Folia Universitatis Agriculturae Stetinensis 217(87): 221–226.
  • Szpikowski J., 2010. Uwarunkowania i wielkość rozbryzgu gleby na podstawie pomiarów na powierzchniach testowych w zlewni Chwalimskiego Potoku (Pomorze Zachodnie). Prace i Studia Geograficzne 45: 181–195.
  • Śmietana M., 1987. Zróżnicowanie rozbryzgu gleby na użytkowanych rolniczo stokach fliszowych. Studia Geomorphologica Carpatho-Balcanica 21: 161–182.
  • Świdziński H., 1973. Z badań geologicznych w Karpatach, Prace Geologiczne 80: 11–62.
  • Święchowicz J., 2010. Ekstremalne spłukiwanie i erozja linijna na stokach użytkowanych rolniczo w polskich Karpatach fliszowych. In: E. Smolska, J. Rodzik (red.), Procesy erozyjne na stokach użytkowanych rolniczo (metody badań, dynamika i skutki). Prace i Studia Geograficzne Uniwersytetu Warszawskiego 45: 29–48.
  • Święchowicz J., 2012a. Water erosion on agricultural foothill slopes (Carpathian Foothills, Poland). Zeitschrift für Geomorphology 56(3): 21–35. DOI: https://doi.org/10.1127/0372-8854/2012/S-00102.
  • Święchowicz J., 2012b. Wartości progowe parametrów opadów deszczu inicjujących procesy erozyjne w zlewniach użytkowanych rolniczo. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków.
  • Święchowicz J., 2017. Assessment of natural and anthropogenic conditions for soil erosion by water in agricultural catchment in Poland. Geographia Cassoviensis 11(1): 89–105.
  • Święchowicz J., 2018. The assessment of influence of soil erosion by water in the transformation of agricultural slopes of the Wiśnicz Foothills. Landform Analysis 36: 85–95. DOI:10.12657/landfana.036.008.
  • Terry J.P., Shakesby R.A., 1993. Soil hydrophobicity effects on rainsplash: simulated rainfall and photographic evidence. Earth Surface Processes and Landforms 18(6): 519–525. DOI: https://doi.org/10.1002/esp.3290180605.
  • Thornes, J.B., 1990. Vegetation and erosion: processes and environments . Chichester: Wiley.
  • Van Dijk A.I.J.M., 2002. Exponential distribution theory and the interpretation of splash detachment and transport experiments. Soil Science Society of America Journal 66: 1466–1474. DOI: https://doi.org/10.2136/sssaj2002.1466.
  • Van Dijk A.I.J.M., Bruijnzeel L.A., Eism E.H., 2003. A methodology to study rain splash and wash processes under natural rainfall. Hydrological Processes 17(1): 153–167. DOI: https://doi.org/10.1002/hyp.1154.
  • Wainwright J., 1996. Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. Catena 26: 27–47. DOI: https://doi.org/10.1016/0341-8162(95)00033-X.
  • Waksman S.A., Stevens K.R. 1930. A critical study of the methods for determining the nature and abundance of soil organic matter. Soil Science 30: 97–116.
  • Wei Y., Wu X., Cai C., 2015. Splash erosion of clay–sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure. Catena 135: 254–262. DOI: https://doi.org/10.1016/j.catena.2015.08.003.
  • Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses – a guide to conservation planning. US Department of Agriculture. Agriculture Handbook No. 537. USDA, Washington.
  • Yao J.J., Cheng J.H., Zhou Z.D., Sun L., Zhang H.J., 2018. Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. Catena 167: 411–421.DOI: https://doi.org/10.1016/j.catena.2018.05.019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a6d83e0d-3d83-4e46-8d65-e4d2d0547a0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.