Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 40, No. 1 | 101--115
Tytuł artykułu

Underwater friction-stir welding of a stir-cast AA6061-SiC metal matrix composite: optimization of the process parameters, microstructural characterization, and mechanical properties

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is an underlying fact for the case of the joining process especially welding to have optimized parameters to achieve joints with outstanding mechanical characteristics. In the current article, using stir-cast aluminum-based alloy (Al 6061) is stir-cast with Al 6061/5%wt. silicon carbide, Al 6061/10%wt. silicon carbide, and Al 6061/18%wt. silicon carbide was welded using an underwater friction-stir welding process. Optimum welding parameters [namely, tool rotating speed (N), welding speed (S), and silicon carbide (SiC)] are investigated using analysis of variance (ANOVA) and response surface methodology (RSM) statistical approaches. High ultimate tensile strength and microhardness were set as required characteristics of quality welds. Since there are two responses and two objectives, multiple-criteria decision-making approach-response surface methodology was performed alongside ANOVA. Optimal parameters from these statistical approaches are converged to a tool rotating speed of 1,736.36 rpm, a welding speed of 11.58 mm/min, and a SiC of 16.67%, respectively. For the current inquiry, the computed ultimate tensile strength and microhardness are 984 MPa and 89.9 HV, respectively, and these values are congruent with the findings of effectiveness studies. It is deduced from this study that the optimal parameters are convergent irrespective of the two used techniques for the investigated experimental data.
Wydawca

Rocznik
Strony
101--115
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Benha University, Department of Mechanical Engineering, Egypt
  • Manufacturing Engineering Department, Modern Academy for Engineering and Technology, P.O. Box, Cairo 11571, Egypt
Bibliografia
  • [1] El-Kassas AM, Sabry I. An appraisal of characteristic mechanical properties and microstructure of friction stir welding for Aluminium 6061 alloy – Silicon Car-bide (SiCp) metal matrix composite. J Mech Eng Sci. 2019;13:5804–17.
  • [2] H. A. K. A. Khaki S. Int J Adv Design Manuf Technol. 2019;12:25.
  • [3] Sabry I, El-Kassas AM. Cost estimation of pipe friction stir welding. Int J Adv Res Innov. 2017;4:121–7.
  • [4] El-Kassas A, Sabry IRS, Thekkuden DT. Characteristics of potential sources – vertical force, torque and current on penetration depth for quality assessment in friction stir welding of AA 6061 pipes. Int Rev Aerosp Eng. 2019;12:4.
  • [5] Sabry I, El-Kassas A, Mourad A-HI, Thekkuden DT, Qudeiri JA. Friction stir welding of T-joints: experimental and statistical analysis. J Manuf Mater Process. 2019;3:38.
  • [6] Wahid MA, Khan ZA, Siddiquee AN. Review on underwater friction stir welding: a variant of friction stir welding with great potential of improving joint properties. Trans Nonferrous Met Soc China. 2018;28:193–219.
  • [7] Sabry I, Mourad A-HI, Thekkuden DT. Comparison of mechanical characteristics of conventional and underwater friction stir welding of AA 6063 pipe joints. Int Rev Aerosp Eng. 2020;14:1.
  • [8] Sabry I, El-Zathry NE, El-Bahrawy FT, Abdel Ghaffar A. Extended hybrid statistical tools ANFIS-GA to optimize underwater friction stir welding process parameters for ultimate tensile strength amelioration. In: 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Egypt, 2021. https://doi.org/10.1109/NILES53778.2021.9600552
  • [9] Sabry I, Allah N, Nour M, Ghafaar M. Mechanical characteristic of Al 6063 pipe joined by under water friction stir welding. Adv Sustainability Sci Technol. 2021;9:689–99.
  • [10] Sabry I, Zaafarani N. Dry and underwater friction stir welding of AA6061 pipes – a comparative study. In: IOP Conf. Series: Materials Science and Engineering. 2021;1091:012032.
  • [11] Sabry I, Gadallah N, Abdel Ghafaar M, Abdel-Mottaleb MM. Optimization of process parameters to maximize ultimate tensile strength and hardness of underwater friction stir welded aluminium alloys using fuzzy logic. Mod Concepts Mater. 2020;3:73–8.
  • [12] El-Kassas AM, Sabry I. Optimization of the underwater friction stir welding of pipes using hybrid RSM-fuzzy approach. Int J Appl Eng Res. 2019;14:4562–72.
  • [13] Wang Q, Zhao Z, Zhao Y, Yan K, Zhang H. The adjustment strategy of welding parameters for spray formed 7055 aluminum alloy underwater friction stir welding joint. Mater Des. 2015;88:1366–76.
  • [14] Sabry I, Mourad A-HI, Thekkuden DT. Optimization of metal inert gas welded aluminium 6061 pipe parameters using analysis of variance and grey relational analysis. SN Appl Sci. 2020;2:175.
  • [15] Jandaghi MR, Badini C, Pavese M. Dissimilar friction stir welding of AA2198 and AA7475: effect of solution treatment and aging on the microstructure and mechanical strength. J Manufacturing Process. 2020;57:712–24.
  • [16] Jandaghi M, Pouraliakbar H, Saboori A, Hong SI, Pavese M. Comparative insight into the interfacial phase evolutions during solution treatment of dissimilar friction stir welded AA2198-AA7475 and AA2198-AA6013 aluminum sheets. Materials. 2021;14:1290–9.
  • [17] Jandaghi M, Pouraliakbar H, Hong SI, Pavese M. Grain boundary transition associated intergranular failure analysis at TMAZ/SZ interface of dissimilar AA7475-AA2198 joints by friction stir welding. Mater Lett. 2020;280:128557.
  • [18] Sabry I. Investigation of microstructure and mechanical characteristic of underwater friction stir welding for Aluminum 6061 alloy – Silicon carbide (SiC) metal matrix composite. J Mech Eng Sci. 2021;15:8644–8.
  • [19] Sabry I, Thekkuden, DT, Mourad, A-HI, Khan SH. Optimization of tungsten inert gas welding parameters using grey relational analysis for joining AA 6082 pipes. In: 2022 Advances in Science and Engineering Technology International Conferences, 2022.
  • [20] Sabry I, Thekkuden DT, Mourad A-HI, Abdullah K. Variants of friction stir welding for joining AA 6063 pipes. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET), 2022:1–4. https://doi.org/10.1109/ASET53988.2022.
  • [21] Thekkuden DT, Mourad A-HI, Sabry I. TOPSIS – GRA approach to optimize friction stir welded aluminum 6061 pipes parameters. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET), 2022:1–6. https://doi.org/10.1109/A, 2022.
  • [22] Sabry I. Experimental and statistical analysis of possibility sources – rotation speed, clamping torque and clamping pith for quality assessment in friction stir welding. Manag Prod Eng Rev. 2021;12:83–96.
  • [23] Sabry I, Mourad A-HI, Thekkuden DT. Vibration-assisted friction stir welding of AA2024-T3 plates. In: Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP2021 July 12–16, 2021, Virtual, Online, 2021.
  • [24] Sabry I, Mourad A-HI, Thekkuden DT. Study on underwater friction stir welded AA 2024-T3 pipes using machine learning algorithms. In: Conference: ASME 2021 International Mechanical Engineering Congress and Exposition, 2021. https://doi.org/10.1115/IMECE2021-71378
  • [25] Rajan TPD, Pillai RM, Pai BC, Satyanarayana KG, Rohatgi PK. Fabrication and characterization of Al-7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Composites Sci Technol. 2007;67:3369–77.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a6bb102b-34a7-46d6-8749-60a2c665e4f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.