Czasopismo
2006
|
Vol. 26, Fasc. 2
|
213--243
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Several concrete parametric classes of tempered stable distributions are discussed in terms of explicit calculations of their Rosiński measures. The hope is that they will provide a family of concrete models useful in applied areas and for which the fitting can be done by parametric methods. Related Ornstein-Uhlenbeck processes are analyzed. The emphasis throughout the paper is on obtaining exact analytic formulas.
Czasopismo
Rocznik
Tom
Strony
213--243
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Inf. Techn., University of Debrecen, 4010 Debrecen, Hungary, terdik@delfin.unideb.hu
autor
- Department of Statistics and Center for Stochastic and Chaotic Processes in Science and Technology, Case Western Reserve University, Cleveland, OH 44106, U.S.A., waw@case.edu
Bibliografia
- [1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York 1992. Reprint of the 1972 edition.
- [2] O. E. Barndorff-Nielsen, J. Pedersen and K. Sato, Multivariate subordination, self-decomposability and stability, Adv. in Appl. Probab. 33 (1) (2001), pp. 160-187.
- [3] O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2) (2001), pp. 167-241.
- [4] D. R Brillinger, Time Series; Data Analysis and Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1981 edition.
- [5] W. Feller, An Introduction of Probability Theory and its Application, Vol. II, Wiley, New York-London 1966.
- [6] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press Inc., San Diego, CA, sixth edition, 2000. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
- [7] C. Halgreen, Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions, Z. Wahrsch. Verw. Gebiete 47 (1) (1979), pp. 13-17.
- [8] P. Hougaard, Survival models for heterogeneous populations derived from stable distributions, Biometrika 73 (2) (1986), pp. 387-396.
- [9] Z. J. Jurek and W. Vervaat, An integral representation for self-decomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 62 (2) (1983), pp. 247-262.
- [10] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys. Rev. E 52 (1995), pp. 1197-1199.
- [11] S. Kwapień and W. A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston 1992.
- [12] E. Lukacs, A characterization of stable processes, J. Appl. Probab. 249 (1969), pp. 409-418.
- [13] B. B. Mandelbrot, Variables et processus stochastiques de Pareto-Lévy et la répartition des reve nues. I et II, C. R. Math. Acad. Sci. Paris 6 (1959), pp. 613-615.
- [14] R. N. Mantegna and H. E. Stanley, Stochastic processes with ultraslow convergence to a Gaussian: The truncated Lévy flight, Phys. Rev. Lett. 73 (1994), pp. 2946-2949.
- [15] H. Masuda, On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process, Bernoulli 10 (1) (2004), p. 97-120.
- [16] E. W. Montroll and H. Scher, Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries, J. Statist. Phys. 10 (1973), pp. 101-135.
- [17] A. Piryatinska, A. I. Saichev, and W. A. Woyczyński, Models of anomalous diffusion: The subdiffusive case, Physica A: Statistical Physics 349 (2005), pp. 375-424.
- [18] A. P. Prudnikov, Y. A. Brychkov, and I. Marichev, Integrals and Series, Vol. 1. Elementary Functions, Gordon and Breach Science Publishers, New York 1986. Translated from the Russian and with a preface by N. M. Queen.
- [19] J. Rosiński, Tempering stable processes, Stochastic Process. Appl. (to appear).
- [20] J. Rosiński, Tempered stable processes, in: 2nd MaPhySto Lévy Conference, MaPhySto, Aarhus, January 2002, p. 215.
- [21] K. Sato, Lévy Processes ad Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., Vol. 68, Cambridge University Press, Cambridge 1999. Translated from the 1990 Japanese original. Revised by the author.
- [22] K. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, in: Probability Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Math. No 1021, Springer, Berlin 1983, pp. 541-551.
- [23] K. Sato and M. Yamazato, Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1) (1984), pp. 73-100.
- [24] K. Sato and M. Yamazato, Completely operator-self-decomposable distributions and operator-stable distributions, Nagoya Math. J. 97 (1985), pp. 71-94.
- [25] V. Seshadri, The Inverse Gaussian Distribution: Statistical Theory and Applications, Lecture Notes in Statist, Vol. 137, Springer, New York 1999.
- [26] Gy. Terdik, Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis; A Frequency Domain Approach, Lecture Notes in Statist., Vol. 142, Springer, New York 1999.
- [27] Gy. Terdik, Higher order statistics and multivariate vector Hermite polynomials for nonlinear analysis of multidimensional time series, Teor. Veroyatnost. Mat. Statist (Teor. Imovirnost. ta Matem. Statyst.) 66 (2002), pp. 147-168.
- [28] Gy. Terdik, W. A. Woyczyński, and A. Piryatinska, Fractional- and integer-order moments, and multiscaling for smoothly truncated Lévy flights, Phys. Lett. A, 348 (2006), pp. 94-109.
- [29] K. Urbanik, Self-decomposable probability distributions on Rm, Zastos. Mat. 10 (1969), pp. 91-97.
- [30] K. Urbanik, Lévy's probability measures on Euclidean spaces, Studia Math. 44 (1972), pp. 119-148. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, II.
- [31] K. Urbanik, Operator-decomposable distributions on Euclidean spaces, in: Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ. Prague, Prague, 1971; dedicated to the memory of Antonin Špaček), Academia, Prague, 1973, pp. 859-872.
- [32] S. J. Wolfe, On a continuous analogue of the stochastic difference equation Xn = pXn-1 + Bn, Stochastic Process. Appl. 12 (3) (1982), pp. 301-312.
Uwagi
Dedicated to the memory of Kazimierz Urbanik and his pioneering work on operator-decomposable distributions.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a63a0661-d444-4254-9936-bde25f1d8e21