Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 2 | 138--152
Tytuł artykułu

Study of the Progress of Reaction in the Preparation of tetra-Functional GAP using FTIR Spectroscopy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycidyl azide polymer (GAP) with tetra hydroxyl functional groups or t-GAP is a potential energetic polymeric binder for application in both high energy propellants and high explosives. t-GAP is synthesized via azidation of the precursor tetrafunctional poly-epichlorohydrine (t-PECH) with sodium azide in DMSO solvent medium. In this article, process optimization and progress of chemical reaction for preparation of t-GAP is studied using FTIR spectroscopy and an attempt is made to predict the reaction kinetics with concentration profiling. The characteristic vibrational features corresponding to C‒N3 of t-GAP and C‒Cl of t-PECH have been used to monitor the progress of reaction.
Słowa kluczowe
Wydawca

Rocznik
Strony
138--152
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
  • Defence Institute of Advanced Technology, Girinagar, Pune-411 025, India
Bibliografia
  • [1] Provatas, A. Energetic Polymers and Plastics for Explosive Formulations — A Review of Recent Advances. DSTO-TR-0966, Commonwealth of Australia, Canberra, 2000.
  • [2] Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives. John Wiley & Sons Ltd, Chichester, 2007; ISBN-13 978-0-470-02967-1.
  • [3] Kubota, N. Propellants and Explosives, Thermochemical Aspects of Combustion. 2nd Ed., Wiley-VCH Verlag GmbH & Co. KG, Weinheim, Germany, 2007; ISBN 978-3-527-31424-9.
  • [4] Agrawal, J.P. High Energy Materials, Propellants Explosives and Pyrotechnics. Wiley-VCH Verlag GmbH & Co. KG, Weinheim, Germany, 2010; ISBN 978-3-527-32610-5.
  • [5] Frankel, M.B.; Grant, L.R.; Flanagan, J.E. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8: 550-563; https://doi.org/10.2514/3.23514.
  • [6] Nazare, A.N.; Asthana, S.N.; Singh, H. Glycidyl Azide Polymer (GAP) – An Energetic Component of Advanced Solid Rocket Propellants – A Review. J. Energ. Mat. 1992, 10(1): 43-63; https://doi.org/10.1080/07370659208018634.
  • [7] Nguyen, C.; Morin, F.; Hiernard, F.; Guengant, Y. High Performance Aluminized GAP-based Propellants – IM Results. Proc. Insensitive Munitions & Energetic Materials Technology Symp., Munich, Germany, 2010.
  • [8] Da Silva, G.; Rufino, S.C.; Iha, K. Green Propellants: Oxidizer. J. Aerospace Technol. Manage. 2013, 5.2.
  • [9] Wingborg, N.; Andreasson, S.; de Flon, J.; Johnsson, M.; Liljedahl, M.; Oscarsson, C.; Petterssons, Å.; Wanhatalo, M. Development of ADN-based Minimum Smoke Propellants. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010, paper 2010-6586, Nashvile, https://doi.org/10.2514/6.2010-6586.
  • [10] Gettwert, V.; Franzin, A.; Bohn, M.A.; DeLuca, L.T.; Heintz, T.; Weiser, V. ADN/ GAP Composite Propellants with and without Metallic Fuels. Proc. 10th Int. Symp. Special Topics in Chemical Propulsion & Energetic Materials (10-ISICP), Poitiers, France, 2014.
  • [11] DeLuca, L.T.; Palmucci, I.; Franzin, A.; Weiser, V.; Gettwert, V.; Wingborg, N.; Sjöblomc, M. New Energetic Ingredients for Solid Rocket Propulsion. Proc. 9th Int. High Energy Materials Conf. and Exhibit (HEMCE), Thiruvananthapuram, Kerala, India, 2014.
  • [12] Gettwert, V.; Fischer, S.; Menke, K. Aluminized ADN/GAP Propellants – Formulation and Properties. Proc. 44th Int. Annu. Conf. Fraunhofer ICT, Karlsruhe, Germany, 2013, P57.
  • [13] Menke, K.; Heintz, T.; Schweikert, W.; Keicher, T.; Krause, H. Formulation and Properties of ADN/GAP Propellants. Propellants Explos. Pyrotech. 2009, 34: 218-230; https://doi.org/10.1002/prep.200900013.
  • [14] Klapotke, T.M.; Suceska, M. Theoretical Evaluation of TKX-50 as an Ingredient in Rocket Propellants. Z. Anorg. Allg. Chem. 2021, 647: 572-574; https://doi.org/10.1002/zaac.202100053.
  • [15] Hussein, A.K.; Elbeih, A.; Zeman, S. The Effect of Glycidylazide Polymer on the Stability and Explosive Properties of Different Interesting Nitramines. RSC Adv. 2018, 8: 17272-17278; https://doi.org/10.1039/C8RA02994F.
  • [16] Ampleman, G. Glycidyl Azide Polymer. US Patent 5,359,012, 1994.
  • [17] Soman, R.R.; Athar, J.; Agawane, N.T.; Shee, S.; Gore, G.M.; Sikder, A.K. Synthesis, Characterization and Rheology of Tetrafunctionalglycidylazide Polymer vis-a`-vis Difunctional GAP. Polym. Bull. 2016, 73: 449-461.
  • [18] Pintar, A.; Batista, J.; Levec, J. In Situ Fourier Transform Infrared Spectroscopy as an Efficient Tool for Determination of Reaction Kinetics. Analyst 2002, 127(11): 1535-1540; https://doi.org/10.1039/B207204A.
  • [19] Ye, S.; Yang, S.; Ni, L.; Qiu, W.; Xu, Q. Mechanism and Kinetic Study of Paal-Knorr Reaction Based on In-Situ MIR Monitoring. Spectrochim. Acta A 2022, 264: paper 120280; https://doi.org/10.1016/j.saa.2021.120280.
  • [20] Levenspiel, O. Interpretation of Batch Reactor Data. In: Chemical Reaction Engineering. 3rd Ed., John Wiley & Sons, 1999, pp. 38-75; ISBN 978-0471254249
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a62f8124-0a12-42ca-ae73-d543774d69cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.