Warianty tytułu
Języki publikacji
Abstrakty
Recent technological advancements in diabetes technologies, such as Continuous Glucose Monitoring (CGM) systems, provide reliable sources to blood glucose data. Following its development, a new challenging area in the field of artificial intelligence has been opened and an accurate prediction method of blood glucose levels has been targeted by scientific researchers. This article proposes a new method based on Artificial Neural Networks (ANN) for blood glucose level prediction of Type 1 Diabetes (T1D) using only CGMdata as inputs. To show the efficiency of our method and to validate our ANN, real CGM data of 13 patients were investigated. The accuracy of the strategy is discussed based on some statistical criteria such as the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE). The obtained averages of RMSE are 6.43 mg/dL, 7.45 mg/dL, 8.13 mg/dL and 9.03 mg/dL for Prediction Horizon (PH) respectively 15 min, 30 min, 45 min and 60 min and the average of MAPE was 3.87% for PH = 15 min, knowing that the smaller is the RMSE and MAPE, the more accurate is the prediction. Experimental results show that the proposed ANN is accurate, adaptive, and very encouraging for a clinical implementation. Furthermore, while other studies have only focused on the prediction accuracy of blood glucose, this work aims to improve the quality of life of T1D patients by using only CGM data as inputs and by limiting human intervention.
Czasopismo
Rocznik
Tom
Strony
828--840
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- Université de Tunis, ENSIT, LR13ES03 SIME, 1008, Montfleury, Tunisia, benalijaouher@yahoo.fr
autor
- Université de Tunis, ENSIT, LR13ES03 SIME, Montfleury, Tunisia; Laboratoire d'Informatique et des Systèmes, Ecole d'Ingénieurs SeaTech, Université de Toulon, France
autor
- Université de Tunis, ENSIT, LR13ES03 SIME, Montfleury, Tunisia
autor
- Centre Hospitalier Intercommunal de Toulon La Seyne, Toulon Cedex, France
autor
- Université de Tunis, ENSIT, LR13ES03 SIME, Montfleury, Tunisia
autor
- Laboratoire d'Informatique et des Systèmes, Ecole d'Ingénieurs SeaTech, Université de Toulon, France
Bibliografia
- [1] Lambert P, Bingley PJ. What is type 1 diabetes? Medicine 2006;34:47–51.
- [2] Gan M, Albanese-O'Neill A, Haller MJ. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Type Curr Prob Pediatr Adolesc Health Care 2012;42:269–91.
- [3] Djakouré-Platonoff C, Radermercker R, Reach G, Slama G, Selam J. Accuracy of the continuous glucose monitoring system in inpatient and outpatient conditions. Diabetes Metab 2003;28:159–62.
- [4] Benhamou PY, Catargi B, Delenne B, Guerci B, Hanaire H, Jeandidier N. Real time continuous glucose monitoring (cgm) integrated into the treatment of type 1 diabetes: consensus of experts from sfd, evadiac and sfe. Diabetes Metab 2012;38(27–28, 34):67–83.
- [5] Bremer T, Gough D. Is blood glucose predictable from previous values? A solicitation for data. Diabetes 1999;44:445–51.
- [6] Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor timeseries. IEEE Trans Biomed Eng 2007;54(May (5)):931–7.
- [7] Sparacino G, Zanderigo S, Aran A, Cobelli C. Continuous glucose monitoring and hypo/hyperglycemia. Diabetes Res Clin Pract 2006;74(2):S160–3.
- [8] Palerm C, Willis J, Desemone J, Bequette B. Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol Ther 2005;7(1):3–14.
- [9] Pappada S, Cameron B, Rosman P, Bourey R, Papadimos T, Oloruntu W, et al. Neural network-based real-time prediction of glucose in patients with insulin dependent diabetes. Diabetes Technol Ther 2011;13(2):135–41.
- [10] Pappada SM, Cameron BD, Rosman PM. Development of a Neural Network for prediction of glucose concentration in type 1 diabetes patients. J Diabetes Sci Technol 2008;2 (September (5)):792–801.
- [11] Stahl F, Johansson R. diabetes mellitus modeling and shortterm prediction based on blood glucose measurements. Math Biosci 2009;217:101–17.
- [12] Georga EI, Vasilios C, Ardigo D, Marina M, Zavaroni I, Polyzos D, et al. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inf 2013;17 (January (1)):71–81.
- [13] Turksoy K, Bayrak E, Quinn L, Littlejohn E, Rollins D, Cinar A. Hypoglycemia early alarm systems based on multivariable. Ind Eng Chem Res 2013;52:12329–36.
- [14] Zecchin C, Facchinetti A, Sparacino G, Cobelli C. Jump Neural Network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Prog Biomed 2014;113 (1):144–52.
- [15] Zecchin C, Facchinetti A, Sparacino G, Cobelli C. How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study. J Diabetes Sci Technol 2016;10(5):1149–60.
- [16] Xingang F, Shuhui L, Fairbank M, Wunsch DC, Alonso E. Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a gridconnected converter. IEEE Trans Neural Netw Learn Syst 2015;26(9):1900–12.
- [17] Stulp F, Sigaud O. Many regression algorithms, one unified model: a review. Neural Netw 2015;69:60–79.
- [18] Fnaiech N, Fnaiech F, Jervis BW, Cheriet M. The combined statistical stepwise and iterative neural network pruning algorithm. Intell Autom Soft Comput 2009;15(4):573–89.
- [19] Fnaiech N, Fnaiech F, Jervis BW. Feed forward neural networks pruning algorithms. Handbook of Elecrical Engineering, IEEE_IES K10149_col15.ind15; February 2011. 15-1–15-16.
- [20] Hamdi T, Di Costanzo V, Fnaiech F, Moreau E, Naeck R, Ginoux JM. Glycemic evolution of type 1 diabetic patients is a chaotic phenomenon. Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE. 2016;5177–81.
- [21] Ginoux J-M, Ruskeepää H, Perc M, Naeck R, Di Costanzo V, Bouchouicha M, Fnaiech F, Sayadi M, Hamdi T. Is type 1 diabetes a chaotic phenomenon? Chaos Solitons Fractals 2018;111:198–205.
- [22] Basu A, Dube S, Slama M. Time lag of glucose from intravascular to interstitial compartment. Hum Diabetes 2013;62:4083–7.
- [23] Kovatchev BP, Shields D, Breton M. Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther 2009, March;11(3):139–43.
- [24] Schmelzeisen-Redeker G, Staib A, Strasser M, Muller U, Schoemaker M. Overview of a novel sensor for continuous glucose monitoring. Diabetes Sci Technol 2013;7:808–14.
- [25] Sachedina N, Pickup J. Performance assessment of the medtronic-minimed continuous glucose monitoring system and its use for measurement of glycaemic control in type 1 diabetic subjects. Diab Med 2003;20(12):1012–5.
- [26] Rossetti P, Bondia J, Vehí J, Fanelli C. Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors 2010;10(12):10936–52.
- [27] Koutny T. glucose predictability, blood capillary permeability, and glucose utilization ratein subcutaneous, skeletal muscle, and visceral fat tissues. Comput Biol Med 2013;43:1680–6.
- [28] Hayashia Y, Setiono R. Combining neural network predictions for medical diagnosis. Comput Biol Med 2002;32:237–46.
- [29] Han J, Pei J, Kamber M. Data mining: concepts and techniques. Elsevier; 2011.
- [30] Blake C, Merz C. UCI repository of machine learning databases.University of CaliforniaIrvine, USA http://mlearn.ics.uci.edu/MLRepository.html1998.
- [31] Pérez-Gandia C, Facchinetti A, Sparacino G, Cobelli C, Gomez EJ, Rigla M, et al. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 2010;12(1):81–8.
- [32] Mougiakakou SG, Prountzou A, Iliopoulou D, Nikita KS, Vaze A, Bartsocas CS. Neural network based glucose-insulin metabolism models for children with type 1 diabetes. Proc 28th Annu Int Conf IEEE Eng Med Biol Soc 2006;3545–8.
- [33] Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Bio-Med Eng 2012;59(6):1550–60.
- [34] Robertson G, Lehmann ED, Sandham W, Hamilton D. Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: a proof-of-concept pilot study. J Electr Comput Eng 2011;2.
- [35] Georga EI, Protopappas V, Polyzos D, Fotiadis D. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 2015;53(12):1305–18.
- [36] Sandham W, Nikoletou D, Hamilton D, Patterson K, Japp A, Macgregor C. Proceedings of the 9th European Signal Processing Conference (EUSIPCO' 98), vol. 11; 1998;673–6.
- [37] Mougiakakou SG, Prountzou K, Nikita KS. Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS' 05), vol. 1; September, 2005;298–301.
- [38] Zarkogianni K, Mougiakakou SG, Prountzou A, Vazeou A. An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007;5972–5.
- [39] Tarin C, Teufel E, Pico J, Bondia J, Pfleider HJ. A comprehensive pharmacokinetic model of insulin glargine and other insulin formulations. IEEE Trans Biomed Eng December, 2005;52(12):1994–2005.
- [40] Lehmann ED, Deutsch T. A physiological model of glucoseinsulin interaction in type 1 diabetes mellitus. J Biomed Eng May, 1992;14(3):235–42.
- [41] American Diabetes Association. Nutrition recommendations and interventions for diabetes. Diabetes Care February, 2008;31(1):61–78.
- [42] Soeborg T, Rasmussen CH, Mosekilde E, Colding-Jorg M. Absorption kinetics of insulin after subcutaneous administration. Eur J Pharm Sci January, 2009;36(1):78–90.
- [43] Man CD, Camilleri M, Cobelli C. A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Neural Netw December, 2006;53(12):2472–8.
- [44] Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987;10:622–8.
- [45] Hamdi T, Ben Ali J, Di Costanzo V, Fnaiech F, Moreau E, Ginoux J-M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern Biomed Eng 2018;38(2):362–72.
- [46] Bajestani NS, Kamyad AV, Zare A. Nephropathy forecasting in diabetic patients using a GA-based type-2 fuzzy regression model. Biocybern Biomed Eng 2017;37(2):281–9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a5f44880-f2e6-4465-815a-5889516664bb