Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 4 | 1499--1511
Tytuł artykułu

Measurement of the visual system response and its correlation with the central nervous system in patients diagnosed with type 2 diabetes mellitus (T2DM)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diabetes deteriorates the central nervous system declining the motion capacity, mental speed and efficiency. Additionally, diabetes affects the visual system particularly the retina. Both systems are evaluated separately even though they have a direct relationship to simple tasks such as object evasion. For these reasons, the main objective of this research is to study the relationship between retinal response and the patient's cognitive abilities. This article presents the results of experimental tests applied to 34 patients diagnosed with Type 2 Diabetes Mellitus without diabetic retinopathy. Two visual perception experiments were applied in order to evaluate the simple and choice reaction times, while the electrical response of the retina was obtained via electroretinography. The results obtained from the visual perception experiments and the retinal evaluation were correlated with the following variables: central glucose; glycosylated hemoglobin and, age. The statistical analysis of the results shows a negative correlation between glucose and the times for retinal response (ta = - 0.2109 p = 0.2548, tb = - 0.2646 p = 0.1503). A significant correlation between the simple reaction times and the retinal response times was identified (ta = 0.3141 p = 0.0800, tb = 0.2981 p = 0.0975). While no relationship between the performance index and the retinal response was found. The results indicate that the visual system plays a fundamental role in the simple reaction process and this does not influence the decision-making process.
Wydawca

Rocznik
Strony
1499--1511
Opis fizyczny
Bibliogr. 57 poz., tab., wykr.
Twórcy
  • Electronic Engineering Department, Affiliated Institute of Technology of Celaya
  • Robotic engineering department, affiliated Polytechnic University of Guanajuato, Av Universidad sur 1001 Cortazar, Gto. México, C.P 38496, aherrera@upgto.edu.mx
  • Mexican Institute for Social Security, General Hospital Zone 4. Celaya, Gto
  • Mexican Institute for Social Security, General Hospital Zone 4. Celaya, Gto
  • Electronic Engineering Department, Affiliated Institute of Technology of Celaya
  • Electronic Engineering Department, Affiliated Institute of Technology of Celaya
Bibliografia
  • [1] Takeuchi A, Matsushima E, Kato M, Konishi M, Izumiyama H, Murata Y, et al. Characteristics of neuropsychological functions in inpatients with poorly-controlled type 2 diabetes mellitus. J Diabetes Investig 2012;3:325–30. http://dx.doi.org/10.1111/j.2040-1124.2011.00170.x.
  • [2] Wong X, Heloise R, Scholey A, Renald P, Howe C. Assessing premorbid cognitive ability in adults with type 2 diabetes mellitus — a review with implications for future intervention studies. Curr Diab Rep 2014;14. http://dx.doi.org/10.1007/s11892-014-0547-4.
  • [3] Boulton AJM, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies. Diabetes Care 2005;28:956–62.
  • [4] Kim D-J, Yu JH, Shin M-S, Shin Y-W, Kim M-S. Hyperglycemia reduces efficiency of brain networks in subjects with type 2 diabetes. PLoS One 2016;11:1–14. http://dx.doi.org/10.1371/journal.pone.0157268.
  • [5] Wu G, Lin L, Zhang Q, Wu J. Brain gray matter changes in type 2 diabetes mellitus: A meta-analysis of whole-brain voxel-based morphometry study. J Diabetes Complications 2017;31:1698–703. http://dx.doi.org/10.1016/j.jdiacomp.2017.09.001.
  • [6] Li Y, Shang S, Fei Y, Chen C, Jiang Y, Dang L, et al. Interactive relations of type 2 diabetes and abdominal obesity to cognitive impairment: a cross-sectional study in rural area of Xi'an in China. J Diabetes Complications 2018;32:48–55. http://dx.doi.org/10.1016/j.jdiacomp.2017.09.006.
  • [7] Negi A, Vernon SA. An overview of the eye in diabetes. J R Soc Med 2003;96:266–72. http://dx.doi.org/10.1258/jrsm.96.6.266.
  • [8] Reed TE, Jensen AR. Arm nerve conduction velocity (NCV), brain NCV, reaction time, and intelligence. Intelligence 1991;15:33–47. http://dx.doi.org/10.1016/0160-2896(91)90021-5.
  • [9] Tan X, Liang Y, Zeng H, Qin C, Li Y, Yang J, et al. Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment. Brain Imaging Behav 2019;1–9. http://dx.doi.org/10.1007/s11682-018-0017-8.
  • [10] Sanchez-Marin FJ, Padilla-Medina JA. A psychophysical test of the visual pathway of children with autism. J Autism Dev Disord 2008;38:1270–7. http://dx.doi.org/10.1007/s10803-007-0507-9.
  • [11] Cao D, Zele AJ, Pokorny J. Linking impulse response functions to reaction time: rod and cone reaction time data and a computational model. Vision Res 2007;47:1060–74. http://dx.doi.org/10.1016/j.visres.2006.11.027.
  • [12] Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155–68. http://dx.doi.org/10.1016/j.neuron.2006.09.020.
  • [13] Walter ED, Sparrow WA, Ward T. Fractionated Reaction Times and Movement Times of Down Syndrome and Other Adults With Mental Retardation. Adapt Phys Activ Q 1991;8:221–33.
  • [14] Said G. Diabetic neuropathy—a review. Nat Clin Pract Neurol 2007;3:331–40. http://dx.doi.org/10.1038/ncpneuro0504.
  • [15] Sanchez Marin FJ, Padilla Medina JA. Simple reaction times and performance in the detection of visual stimuli of patients with diabetes. Comput Biol Med 2010;40:591–6. http://dx.doi.org/10.1016/j.compbiomed.2010.04.003.
  • [16] Niruba R, Maruthy KN. Assessment of auditory and visual reaction time in type 2 diabetics – a case control study. Al Ameen J Med Sci 2011;4:274–9.
  • [17] Gonder-Frederick LA, Zrebiec JF, Bauchowitz AU, Ritterband LM, Magee JC, et al. Cognitive function is disrupted by both hypo-and hyperglycemia in school-aged children with type 1 diabetes: a field study. Diabetes Care 2009;32:1001–6. http://dx.doi.org/10.2337/dc08-1722.
  • [18] Ferguson SC, Blane A, Perros P, McCrimmon RJ, Best JJK, Wardlaw J, et al. Cognitive Ability and Brain Structure in Type 1 Diabetes: Relation to Microangiopathy and Preceding Severe Hypoglycemia. Diabetes 2003;52:149–56. http://dx.doi.org/10.2337/diabetes.52.1.149.
  • [19] Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res 2015;2015319692. http://dx.doi.org/10.1155/2015/319692.
  • [20] Kolb H, Nelson R, Fernández E, Jones B. The Electroretinogram: Clinical Applications. Webvision Organ Retin Vis Syst 2011. http://webvision.med.utah.edu (accessed November 1, 2018).
  • [21] Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol 1989;93:101–22. http://dx.doi.org/10.1085/jgp.93.1.101.
  • [22] Chung NH, Kim SH, Kwak MS. The electroretinogram sensitivity in patients with diabetes. Korean J Ophthalmol 1993;7:43–7.
  • [23] Yamamoto S, Kamiyama M, Nitta K, Yamada T, Hayasaka S. Selective reduction of the S cone electroretinogram in diabetes. Br J Ophthalmol 1996;80:973–5. http://dx.doi.org/10.1136/bjo.80.11.973.
  • [24] Yamamoto S, Takeuchi S, Kamiyama M. The short wavelength-sensitive cone electroretinogram in diabetes: Relationship to systemic factors. Doc Ophthalmol 1997;94:193–200. http://dx.doi.org/10.1007/BF02582978.
  • [25] Kim SH, Lee SH, Bae JY, Cho JH, Kang YS. Electroretinographic evaluation in adult diabetics. Doc Ophthalmol 1997;94:201–13. http://dx.doi.org/10.1007/BF02582979.
  • [26] Dawson WW, Hazariwala K, Karges S. Human photopic response to circulating glucose. Doc Ophthalmol 2000;101:155–63. http://dx.doi.org/10.1023/A:1026569701949.
  • [27] McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 2015;130:1–12. http://dx.doi.org/10.1007/s10633-014-9473-7.
  • [28] Von GraefesA, Klin A. The amplitude of the c Wave in the human ERG as a Function of the Luminous Energy of the Stimulus. Albr von Graefe's Arch Clin Exp Ophthalmol 1981;217:299–307.
  • [29] Täumer R, Rohde N, Wichmann W, Röver J. Experiments concerning the human C-wave. Albr von Graefe's Arch Clin Exp Ophthalmol 1976;198:139–53. http://dx.doi.org/10.1007/BF00410014.
  • [30] Padilla Medina JA, Prado Olivarez J, Amador Licona N, Cardona Torres LM, et al. Study on simple reaction and choice times in patients with type I diabetes. Comput Biol Med 2013;43:368–76.
  • [31] Skoog K, Nilsson SEG. The c-wave of the human d.c. registered erg. II Cyclic variantions of the c-wave amplitud. Acta Ophthalmol (Copenh) 1974;52:904–12.
  • [32] Parvaresh M-M, Ghiasian L, Ghasemi Falavarjani K. Normal values of standard full field electroretinography in an Iranian population. J Ophthalmic Vis Res 2009;4:97–101.
  • [33] Zeidler I. The clinical Electroretinogram IX. The Normal Electroretinogram. Value of the b-Potential in Different Age Groups and Its Differences in Men and Women. Acta Ophthalmol (Copenh) 1959;37:294–301.
  • [34] Gonder-Frederick LA, Cox DJ, Driesen NR, Ryan CM, Clarke WL. Individual differences in neurobehavioral disruption during mild and moderate hypoglycemia in adults with IDDM. Diabetes 1994;43:1407–12.
  • [35] Cox DJ, Gonder-Frederick LA, Schroeder DB, Cryer PE, Clarke WL. Disruptive effects of acute hypoglycemia on speed of cognitive and motor performance. Diabetes Care 1993;16:1391–2. http://dx.doi.org/10.2337/diacare.16.10.1391.
  • [36] Der G, Deary IJ. Age and Sex Differences in Reaction Time in Adulthood : Results From the United Kingdom Health and Lifestyle Survey. Psychol Aging 2006;21:62–73. http://dx.doi.org/10.1037/0882-7974.21.1.62.
  • [37] Bányai M, Lazar A, Klein L, Klon-Lipok J, Stippinger M, Singer W, et al. Stimulus complexity shapes response correlations in primary visual cortex. Proc Natl Acad Sci U S A 2019;116:2723–32. http://dx.doi.org/10.1073/pnas.1816766116.
  • [38] Xu J, Chen F, Liu T, Wang T, Zhang J, Yuan H, et al. Brain functional networks in type 2 diabetes mellitus patients: a resting-state functional MRI study. Front Neurosci 2019;13:1–10. http://dx.doi.org/10.3389/fnins.2019.00239.
  • [39] Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 2018;61:1902–12. http://dx.doi.org/10.1007/s00125-018-4692-1.
  • [40] Nasralah Z, Robinson W, Jackson GR, Barber AJ. Measuring visual function in diabetic retinopathy: progress in basic and clinical research. J Clin Exp Ophthalmol 2013;4:1–8. http://dx.doi.org/10.4172/2155-9570.1000306.
  • [41] Kühn NK, Gollisch T. Activity Correlations between Direction-Selective Retinal Ganglion Cells Synergistically Enhance Motion Decoding from Complex Visual Scenes. Neuron 2019;101:963–76. http://dx.doi.org/10.1016/j.neuron.2019.01.003.
  • [42] Malik RA, Kallinikos P, Abbott CA, Van Schie CHM, Morgan P, et al. Corneal confocal microscopy: A non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003;46:683–8. http://dx.doi.org/10.1007/s00125-003-1086-8.
  • [43] De Cillà S, Ranno S, Carini E, Fogagnolo P, Ceresara G, et al. Corneal subbasal nerves changes in patients with diabetic retinopathy: An in vivo confocal study. Investig Ophthalmol Vis Sci 2009;50:5155–8. http://dx.doi.org/10.1167/iovs.09-3384.
  • [44] Gao Y, Zhang Y, Ru YS, Wang XW, Yang JZ, Li CH, et al. Ocular surface changes in type II diabetic patients with proliferative diabetic retinopathy. Int J Ophthalmol 2015;8:358–64. http://dx.doi.org/10.3980/j.issn.2222-3959.2015.02.26.
  • [45] Eguchi H, Hiura A, Nakagawa H, Kusaka S, Shimomura Y. Corneal nerve Fiber structure, its role in corneal function, and its changes in corneal diseases. Biomed Res Int 2017;2017. http://dx.doi.org/10.1155/2017/3242649.
  • [46] Barsegian A, Lee J, Salifu MO, McFarlane SI. Corneal neuropathy: an underrated manifestation of diabetes mellitus. J Clin Endocrinol Diabetes 2018;2:1–32. http://dx.doi.org/10.1016/j.physbeh.2017.03.040.
  • [47] Adhikari P, Marasini S, Shah RP, Joshi SN, Shrestha JK. Multifocal electroretinogram responses in Nepalese diabetic patients without retinopathy. Doc Ophthalmol 2014;129:39–46. http://dx.doi.org/10.1007/s10633-014-9447-9.
  • [48] Ziccardi L, Parisi V, Picconi F, Di Renzo A, Lombardo M, Frontoni S, et al. Early and localized retinal dysfunction in patients with type 1 diabetes mellitus studied by multifocal electroretinogram. Acta Diabetol 2018;55:1191–200. http://dx.doi.org/10.1007/s00592-018-1209-9.
  • [49] Spoz E, Lubinski W, Karczewicz D. The Pattern Electroretinogram Test in Patients With Diabetes Mellitus Type 1 With Normal Fundus. Ann Acad Med Stetin 2007;53:35–42.
  • [50] Ferdousi M, Romanchuk K, Mah JK, Virtanen H, Millar C, Malik RA, et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci Rep 2019;9:1–6. http://dx.doi.org/10.1038/s41598-019-45116-z.
  • [51] Han SB, Yang HK, Hyon JY. Influence of diabetes mellitus on anterior segment of the eye. Clin Interv Aging 2019;14:53–63. http://dx.doi.org/10.2147/CIA.S190713.
  • [52] Yang QH, Zhang Y, Zhang XM, Li XR. Prevalence of diabetic retinopathy, proliferative diabetic retinopathy and non-proliferative diabetic retinopathy in asian t2dm patients: A systematic review and metaanalysis. Int J Ophthalmol 2019;12:302–11. http://dx.doi.org/10.18240/ijo.2019.02.19.
  • [53] Mermeklieva EA. Pattern electroretinography and retinal changes in patients with diabetes mellitus type 2. Neurophysiol Clin 2019;49:209–15. http://dx.doi.org/10.1016/j.neucli.2019.04.002.
  • [54] Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the brain a key player in glucose regulation and development of type 2 diabetes? Front Physiol 2019;10:1–23. http://dx.doi.org/10.3389/fphys.2019.00457.
  • [55] Marquis R, Muller S, Lorio S, Rodriguez-Herreros B, Melie- Garcia L, et al. Spatial resolution and imaging encoding fmri settings for optimal cortical and subcortical motor somatotopy in the human brain. Front Neurosci 2019;13:1–13. http://dx.doi.org/10.3389/fnins.2019.00571.
  • [56] Holopigian K, Seiple W, Lorenzo M, Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Investig Ophthalmol Vis Sci 1992;33:2773–80.
  • [57] Prager TC, Garcia CA, Mincher CA, Mishra J, Chu HH. The pattern electroretinogram in diabetes. Am J Ophthalmol 1990;109:279–84. http://dx.doi.org/10.1016/S0002-9394(14)74550-7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a5b12e78-4c17-400f-adf3-5b75f40a64ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.