Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 29, Fasc. 1 | 169--180
Tytuł artykułu

Kalman-type recursions for time-varying arma models and their implication for least squares procedure

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to ARMA models with timedependent coefficients, including well-known periodic ARMA models. We provide state-space representations and Kalman-type recursions to derive a Wold–Cramér decomposition for the least squares residuals. This decomposition turns out to be very convenient for further developments related to parameter least squares estimation. Some examples are proposed to illustrate the main purpose of these state-space forms.
Wydawca

Rocznik
Strony
169--180
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
Bibliografia
  • [1] G. J. Adams and G. C. Goodwin, Parameter estimation for periodic ARMA models, J. Time Ser. Anal. 16 (1995), pp. 127-146.
  • [2] P. L. Anderson, M. M. Meerschaert and A. V. Vecchia, Innovations algorithm for periodically stationary time series, Stochastic Process. Appl. 83 (1999), pp. 149-169.
  • [3] R. Azrak and G. Mélard, Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients, Stat. Inference Stoch. Process. 9 (2006), pp. 279-330.
  • [4] I. V. Basawa and R. B. Lund, Large sample properties of parameter estimates for periodic ARMA models, J. Time Ser. Anal. 22 (2001), pp. 651-663.
  • [5] A. Bibi and C. Francq, Consistent and asymptotically normal estimators for cyclically time-dependent linear models, Ann. Inst. Statist. Math. 55 (2003), pp. 41-68.
  • [6] D. Cochrane and D. H. Orcutt, Applications of least squares regression to relationships containing autocorrelated error terms, J. Amer. Statist. Assoc. 44 (1949), pp. 32-61.
  • [7] H. Cramér, On some classes of nonstationary stochastic processes, Proc. 4-th Berkeley Symp. Math. Statist. Prob. 2 (1961), pp. 57-78.
  • [8] R. Dahlhaus, Fitting time series models to nonstationary processes, Ann. Statist. 25 (1997), pp. 1-37.
  • [9] P. de Jong and J. Penzer, The ARMA model in state space form, Statist. Probab. Lett. 70 (2004), pp. 119-125.
  • [10] C. Francq and A. Gautier, Large sample properties of parameter least squares estimates for time-varying ARMA models, J. Time Ser. Anal. 25 (2004), pp. 765-783.
  • [11] C. Francq and A. Gautier, Estimation of time-varying ARMA models with Markovian changes in regime, Statist. Probab. Lett. 70 (2004), pp. 243-251.
  • [12] A. Gautier, Asymptotic inefficiency of mean-correction on parameter estimation for a periodic first-order autoregressive model, Comm. Statist. Theory Methods 35 (2006), pp. 2083-2106.
  • [13] V. P. Godambe and C. C. Heyde, Quasi-likelihood and optimal estimation, Internat. Statist. Rev. 55 (1987), pp. 231-244.
  • [14] E. J. Hannan and M. Deistler, The Statistical Theory of Linear Systems, Wiley, New York 1988.
  • [15] A. G. Miamee and S. Talebi, On PC solutions of PARMA(p; q) models, Probab. Math. Statist. 25 (2005), pp. 279-288.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a59db558-94ef-41bb-9503-66ff40edfb31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.