Czasopismo
2021
|
Vol. 25, nr 1
|
47--52
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The subject of the research is the analysis of the impact of damping value on the dynamic response of plate. The work presents the areas of dynamic stability and instability for the different damping values and compared with the plate without damping. Furthermore, the nature of solution for each analyzed case was presented. Research by using the dynamic tools such as phase portraits, Poincaré maps, FFT analysis, the largest Lyapunov exponents were performed. The compatibility of the selected method of stability analysis with the Volmir criterion was also presented.
Czasopismo
Rocznik
Tom
Strony
47--52
Opis fizyczny
Bibliogr. 30 poz., 1 rys., wykr.
Twórcy
autor
- Lodz University of Technology, Department of Strength of Materials, Stefanowskiego 1/15, Lodz, 90-924, Poland, lukasz.borkowski@p.lodz.pl
Bibliografia
- [1] Zizicas, G. A.: Dynamic buckling of thin plates, Trans ASME, 74(7), 1257-1268, 1952.
- [2] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series, Mathematics of computation, 19(90), 297-301, 1965.
- [3] Raftoyiannis, I. G., Kounadis, A. N.: Dynamic buckling of 2- DOF systems with mode interaction under step loading, International journal of non-linear mechanics, 35(3), 531-542, 2000.
- [4] Petry, D., Fahlbusch, G.: Dynamic buckling of thin isotropic plates subjected to in-plane impact, Thin-Walled Structures, 38(3), 267-283, 2000.
- [5] Hutchinson, J.W.,Budiansky, B.: Dynamic buckling estimates, AIAA Journal, 4(3), 525-530, 1966.
- [6] Budiansky, B., Roth, R. S.: Axisymmetric dynamic buckling of clamped shallow spherical shells, NASA TN, 1510, 597-606, 1962.
- [7] Volmir, A. S.: Nonlinear Dynamics Plates and Shells, Science, Moscow, 1972.
- [8] Michlin, S. G., Smolnicki, C. L.: Approximate Methods for the Solution of Integral and Differential Equations, PWN, Warsaw, 1970.
- [9] Collatz, L.: The numerical treatment of differential equations, Springer Science and Business Media, 2012.
- [10] Fortuna, Z., Macukow, B.,Wasowski, J.: Metody numeryczne, WNT, Warszawa, 2002.
- [11] Ari-Gur, J., Simonetta, S. R.: Dynamic pulse buckling of rectangular composite plates, Composites Part B: Engineering, 28(3), 301-308, 1997.
- [12] Kleiber, M., Kotula, W., Saran, M.: Numerical analysis of dynamic quasi-bifurcation, Engineering computations, 4(1), 48-52, 1987.
- [13] Kapitaniak, T.,Wojewoda, J.: Bifurkacje i chaos,Wydawnictwo Naukowe PWN; Wydawnictwo Politechniki Lodzkiej, 2007.
- [14] Hsu, Y. C., Forman, R. G.: Elastic-plastic analysis of an infinite sheet having a circular hole under pressure, Journal of Applied Mechanics, 42(2), 347-352, 1975.
- [15] Kowal-Michalska, K.: About some important parameters in dynamic buckling analysis of plated structures subjected to pulse loading, Mechanics and Mechanical Engineering, 14(2), 269-279, 2010.
- [16] Kolakowski, Z., Kubiak, T.: Interactive dynamic buckling of orthotropic thin-walled channels subjected to in-plane pulse loading, Composite structures, 81(2), 222-232, 2007.
- [17] Mania, R., Kowal-Michalska, K.: Behaviour of composite columns of closed cross-section under in-plane compressive pulse loading, Thin-Walled Structures, 45(10), 902-905, 2007.
- [18] Kubiak, T., Kolakowski, Z., Kowal-Michalska, K., Mania, R., Swiniarski, J.: Dynamic response of conical and spherical shell structures subjected to blast pressure, Proceedings of SSDS’Rio, 2010.
- [19] Kolakowski, Z.: Some aspects of dynamic interactive buckling of composite columns, Thin-Walled Structures, 45(10), 866-871, 2007.
- [20] Bolotin, V.: Dynamic stability of elastic systems, 1962.
- [21] Moorthy, J., Reddy, J. N., Plaut, R. H.: Parametric instability of laminated composite plates with transverse shear deformation, International Journal of Solids and Structures, 26(7), 801-811, 1990.
- [22] Wu, G. Y., Shih, Y. S.: Analysis of dynamic instability for arbitrarily laminated skew plates, Journal of sound and vibration, 292(1), 315-340, 2006.
- [23] Alijani, F., Bakhtiari-Nejad, F., Amabili, M.: Nonlinear vibrations of FGM rectangular plates in thermal environments, Nonlinear Dynamics, 66(3), 251-270, 2011.
- [24] Yuda, H., Zhiqiang, Z.: Bifurcation and chaos of thin circular functionally graded plate in thermal environment, Chaos, Solitons & Fractals, 44(9), 739-750, 2011.
- [25] Wang,Y.G., Song, H. F., Li,D.,Wang, J.: Bifurcations and chaos in a periodic time-varying temperature-excited bimetallic shallow shell of revolution, Archive of Applied Mechanics, 80(7), 815-828, 2010.
- [26] Yeh,Y. L., Lai, H.Y.: Chaotic and bifurcation dynamics for a simply supported rectangular plate of thermo-mechanical coupling in large deflection, Chaos, Solitons&Fractals, 13(7), 1493-1506, 2002.
- [27] Touati,D., Cederbaum,G.: Influence of large deflections on the dynamic stability of nonlinear viscoelastic plates, Acta mechanica, 113(1-4), 215-231, 1995.
- [28] Gilat, R., Aboudi, J.: Parametric stability of non-linearly elastic composite plates by Lyapunov exponents, Journal of sound and vibration, 235(4), 627-637, 2000.
- [29] Borkowski, L.: Influence of the damping effect on the dynamic response of a plate, Journal of Theoretical and Applied Mechanics, 51(1), 263-272, 2019.
- [30] Kolakowski, Z., Teter, A.: Influence of InherentMaterial Damping on the Dynamic Buckling of Composite Columns with Open Cross - Sections, Mechanics and Mechanical Engineering, 17(1), 59-69, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a58a54fb-d92b-4af8-be8a-0d71857aa85e