Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 759--775
Tytuł artykułu

Time-reassigned multisynchrosqueezing of the S-transform for seismic time-frequency analysis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To accurately capture the time-frequency spectral anomaly, a novel time-frequency analysis (TFA) method, termed as time-reassigned multisynchrosqueezing S-transform (TMSSST), is proposed. In this study, we derive a N-order group delay (GD) estimator designed for frequency-domain S-transform to cope with the signal with fast varying instantaneous frequency (IF). By introducing an iterative reassignment procedure, the proposed TMSSST not only can produce a highly energy-concentrated time-frequency representation (TFR) but also can reconstruct the original signal with a high accuracy. Three synthetic signals are employed to validate the effectiveness of the proposed method by comparing with some classical TFA techniques such as S-transform (ST), synchrosqueezing S-transform (SSST) and time-reassigned synchrosqueezing S-transform (TSSST). It is shown that the TMSSST does a better job in addressing strongly frequency-varying signal. Application on field data further indicates the potential of highlighting subsurface geological structures and thus, facilitating seismic interpretation.
Wydawca

Czasopismo
Rocznik
Strony
759--775
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China, liuwei_upc@126.com
  • Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-end Machinery, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
autor
  • College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
  • Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-end Machinery, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
autor
  • College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China, lishuangxi_buct@126.com
  • Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-end Machinery, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
Bibliografia
  • 1. Allen JB (1977) Short term spectral analysis, synthetic and modification by discrete fourier transform. IEEE Trans Acoust Speech Sign Process 25:235-238
  • 2. Anvari R, Siahsar MAN, Gholtashi S, Kahoo AR, Mohammadi M (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens 55:6574-6581
  • 3. Anvari R, Mohammadi M, Kahoo AR, Khan NA, Abdullah AI (2020) Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal. Comput Geosci 135:104376
  • 4. Auger F, Flandrin P (1995) Improving the readability of timefrequency and time-scale representations by the reassignment method. IEEE Trans Signal Process 43:1068-1089
  • 5. Daubechies I, Maes S (1996) A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models wavelets in medicine and biology: Boca Raton. CRC Press, FL, pp 527-546
  • 6. Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Com-put Harm Anal 30:243-261
  • 7. Fourer D, Auger F (2019) Second-order time-reassigned synchrosqueezing transform: application to draupner wave analysis. In: 27th European signal processing conference (EUSIPCO 2019), pp. 1-5
  • 8. Fourer D, Auger F (2021) Second-order horizontal synchrosqueezing of the S-transform: a specific wavelet case study. In: 28th European signal processing conference (EUSIPCO 2021), pp. 1-5
  • 9. He D, Cao H, Wang S, Chen X (2019) Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing. Mech Syst Signal Process 117:255-279
  • 10. He Z, Tu X, Bao W, Hu Y, Li F (2020) Gaussian-modulated linear group delay model: application to second-order time-reassigned synchrosqueezing transform. Signal Process 167:107275
  • 11. Li F, Wu B, Liu N, Hu Y, Wu H (2020) Seismic time-frequency analysis via adaptive mode separation-based wavelet transform. IEEE Geosci Remote Sens Lett 17:696-700
  • 12. Liu N, Gao J, Zhang B, Wang Q, Jiang X (2019) Self-adaptive generalized S transform and its application in seismic time frequency analysis. IEEE Trans Geosci Remote Sens 57(10):7849-7859
  • 13. Liu S, Zhou Z, Peng S, Yang Y, Zeng W, Chen K (2022) Improving the resolution of seismic data based on s transform and mod-ifed variational mode decomposition, an application to songliao basin, northeast China. Acta Geophysica 70:1103-1113
  • 14. Lu X, Yin X, Li K (2020) Enhancing the resolution of time frequency spectrum using directional multichannel matching pursuit. Acta Geophysica 68:1643-1652
  • 15. Mahdavi A, Kahoo AR, Radad M, Monfared MS (2021) Application of the local maximum synchrosqueezing transform for seismic data. Digital Sign Process 110:102934
  • 16. Oberlin T, Meignen S, Perrier V (2015) Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans Signal Process 63:1335-1344
  • 17. Pham DH, Meignen S (2017) High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal. IEEE Trans Signal Process 65:3168-3178
  • 18. Qi P, Wang Y (2020) Seismic time frequency spectrum analysis based on local polynomial fourier transform. Acta Geophysica 68:1-17
  • 19. Radad M (2020) Time-frequency analysis of seismic data by reassigned S-transform to detect low frequency shadows. J Res Appl Geophys 5:283-293
  • 20. Radad M, Gholami A, Siahkoohi HR (2016) A fast method for generating high-resolution single-frequency seismic attributes. J Seismic Explor 25:11-25
  • 21. Shao D, Li T, Han L, Li Y (2022) Noise suppression of distributed acoustic sensing vertical seismic profle data based on time frequency analysis. Acta Geophysica 70:1539-1549
  • 22. Siahsar MAN, Gholtashi S, Kahoo AR, Marvi H, Ahmadifard A (2016) Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition. Geophysics 81:V117-V124
  • 23. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44:998-1001
  • 24. Thakur G, Wu HT (2011) Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J Math Anal 43:2078-2095
  • 25. Wang Q, Gao J, Liu N, Jiang X (2018) High-resolution seismic timefrequency analysis using the synchrosqueezing generalized s-transform. IEEE Geosci Remote Sens Lett 15:374-378
  • 26. Wang X, Li C, Chen W (2022) Seismic thin interbeds analysis based on high-order synchrosqueezing transform. IEEE Trans Geosci Remote Sens 60:5908611
  • 27. Wei D, Shen J (2023) Multi-spectra synchrosqueezing transform. Signal Process 207:108940
  • 28. Xue Y, Cao J, Wang D, Du H, Yao Y (2016) Application of the variational-mode decomposition for seismic time-frequency analysis. IEEE J Select Topics Appl Earth Observ Remote Sens 9:3821-3831
  • 29. Yi C, Qin J, Xiao H, Zhou T (2022) Second-order synchrosqueezing modified S transform for wind turbine fault diagnosis. Appl Acoust 189:108614
  • 30. Yu G, Wang Z, Zhao P (2019) Multisynchrosqueezing transform. IEEE Trans Ind Electr 66:5441-5455
  • 31. Yuan S, Ji Y, Shi P, Jing Z, Gao J, Wang S (2019) Sparse bayesian learning-based seismic high-resolution time-frequency analysis. IEEE Geosci Remote Sens Lett 16(4):623-627
  • 32. Zhang Z, Zhang J, Zou Z (2016) Synchrosqueezing s-transform and its application in seismic spectral decomposition. IEEE Trans Geosci Remote Sens 54:817-825
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a4e40c4d-947b-4e8c-92fd-e4eaed8b73ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.