Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 5 | 326--336
Tytuł artykułu

Improving the Calibration of Surface Time Domain Reflectometry Sensors for Moisture Evaluation of Building Materials Using the Analysis of Covariance Method

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the models for moisture evaluation using a set of the reflectometric sensors in some types of building materials. The readouts reveal the relationship between the building material moisture, being assessed gravimetrically and the apparent permittivity values obtained by the TDR (Time Domain Reflectometry) method and surface sensors. Based on the readouts, equations describing this relationship were derived. These types of equations function as calibration equations and are used to calibrate the sensors. Most of the equations used to describe the examined relationships are linear regression. These equations very often refer to specific materials and cannot be applied to others that differ in density or chemical composition, which is the cause of many incorrect measurements. In this article, we propose the use of the analysis of covariance method (ANCOVA) for the analysis of reflectometric data. Using this method, it will be possible to determine the moisture content of materials, regardless of their type and construction of the sensor, which can significantly improve moisture measurements using the reflectometric method. For comparative aims data achieved in conducted research were analyzed using both traditional linear regression models and using the analysis of covariance method (ANCOVA). Both types of fitting models are discussed and their quality was compared in terms of accuracy expressed by the Residual Standard Error (RSE), the Root Mean Square Error (RMSE) and the determination coefficient (R2) values. The paper showed that the use of the ANCOVA method allows for improvement the fit of the model in terms of the determination coefficient by 0.0174. Moreover, the average RSE and RMSE value in the ANCOVA models are smaller about 1.24 vol.% and 1.25 vol.% than the ones in the regression model, respectively, which means that the models obtained using ANCOVA more accurately describe the examined relationship.
Wydawca

Rocznik
Strony
326--336
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
autor
  • Department of Applied Mathematics, Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland, a.futa@pollub.pl
  • Department of Applied Mathematics, Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland, m.jastrzebska@pollub.pl
  • Department of Technology Fundamentals, Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland, m.pasnikowska-lukaszuk@pollub.pl
  • Department of Applied Mathematics, Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland, e.wosko@pollub.pl
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, z.suchorab@pollub.pl
Bibliografia
  • 1. Hoła J., Matkowski Z., Schabowicz K., Sikora J., Nita K., Wójtowicz S. Identification of moisture content in brick walls by means of impedance tomography. COMPEL - Int J Comput Math Electr Electron Eng. 2012; 31(6): 1774–92.
  • 2. Rajak A.R.A. Emerging Technological Methods for Effective Farming by Cloud Computing and IoT. Emerg Sci J. 2022; 6(5): 1017–31.
  • 3. Oates M.J., Ramadan K., Molina-Martínez J.M., Ruiz-Canales A. Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor. Agric Water Manag. 2017; 183: 41–8.
  • 4. Orr S.A., Young M., Stelfox D., Leslie A., Curran J., Viles H. An ‘isolated diffusion’ gravimetric calibration procedure for radar and microwave moisture measurement in porous building stone. J Appl Geophys. 2019; 163: 1–12.
  • 5. Soncela R., Sampaio S.C., Boas M.A.V., Tavares M.H.F., Smanhotto A. Construction and calibration of tdr probes for volumetric water content estimation in a distroferric red latosol. Eng Agric. 2013; 33(5): 919–28.
  • 6. Paśnikowska-Łukaszuk M., Wlazło-Ćwiklińska M., Zubrzycki J., Suchorab Z. Comparison of Measurement Possibilities by Non-Invasive Reflectometric Sensors and Invasive Probes. Appl Sci. 2023; 13(1).
  • 7. Instruction Manual-TDR200 (Revision 4/17). (accessed on 26 August 2023). [Internet]. Available from: https://s.campbellsci.com/documents/ca/ manuals/tdr200_man.pdf
  • 8. Application Note (TDR Impedance Measurements: A Foundation for Signal Integrity), Tektronix, (accessed on 26 August 2023) [Internet]. Available from: https://download.tek.com/ document/55W_14601_2.pdf
  • 9. Instruction Manual FOM2/mts, E-Test. Available [Internet]. Available from: https://www.e-test.eu/ uploads/5/4/4/3/54435037/fom2mpts-v1.2.pdf
  • 10. Topp G.C., Ferre T. Time-domain reflectometry. In: Encyclopedia of Soils in the Environment [Internet]. Elsevier; 2023. p. 436–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/ B9780128229743002846
  • 11. Černý R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Meas J Int Meas Confed. 2009; 42(3): 329–36.
  • 12. He H., Turner N.C., Aogu K., Dyck M., Feng H., Si B., et al. Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agric For Meteorol. 2021; 306.
  • 13. Kirkham M.B. Chapter 8 - Time Domain Reflectometry. Princ Soil Plant Water Relations. 2005.
  • 14. Majcher J., Kafarski M., Wilczek A., Szypłowska A., Lewandowski A., Woszczyk A., et al. Application of a dagger probe for soil dielectric permittivity measurement by TDR. Meas J Int Meas Confed. 2021; 178.
  • 15. He H., Aogu K., Li M., Xu J., Sheng W., Jones S.B., et al. A review of time domain reflectometry (TDR) applications in porous media. Adv Agron. 2021; 168: 83–155.
  • 16. Basack S., Goswami G., Khabbaz H., Karakouzian M. Flow Characteristics through Granular Soil Infuenced by Saline Water Intrusion: A Laboratory Investigation. Civ Eng J. 2022; 8(5): 863–78.
  • 17. Barnat-Hunek D., Smarzewski P., Suchorab Z. Effect of hydrophobisation on durability related properties of ceramic brick. Constr Build Mater. 2016; 111: 275–85.
  • 18. Freitas T.S., Guimarães A.S., Roels S., de Freitas V.P., Cataldo A. Is the time-domain reflectometry (TDR) technique suitable for moisture content measurement in low-porosity building materials? Sustain. 2020; 12(19).
  • 19. Suchorab Z., Widomski M.K., Łagód G., Barnat-Hunek D., Majerek D. A noninvasive TDR sensor to measure the moisture content of rigid porous materials. Sensors (Switzerland). 2018; 18(11).
  • 20. Suchorab Z., Majerek D., Kočí V., Černý R. Time Domain Reflectometry flat sensor for non-invasive monitoring of moisture changes in building materials. Meas J Int Meas Confed. 2020; 165.
  • 21. Schaap M.G., De Lange L., Heimovaara T.J. TDR calibration of organic forest floor media. Soil Technol. 1997; 11(2): 205–17.
  • 22. Malicki M.A., Plagge R., Roth C.H. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur J Soil Sci. 1996; 47(3): 357–66.
  • 23. Anokye-Bempah L., Phetpan K., Slaughter D., Donis-González I.R. Design, calibration, and validation of an inline green coffee moisture estimation system using time-domain reflectometry. J Food Eng. 2023; 341.
  • 24. Quinones H., Ruelle P. Operative Calibration Methodology of a TDR Sensor for Soil Moisture Monitoring under Irrigated Crops. Subsurf Sens Technol Appl. 2001; 2(1): 31–45.
  • 25. Udawatta R.P., Anderson S.H., Motavalli P.P., Garrett H.E. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agrofor Syst. 2011; 82(1): 61–75.
  • 26. Ren T., Noborio K., Horton R. Measuring Soil Water Content, Electrical Conductivity, and Thermal Properties with a Thermo-Time Domain Reflectometry Probe. Soil Sci Soc Am J. 1999; 63(3): 450–7.
  • 27. Ju Z., Liu X., Ren T., Hu C. Measuring soil water content with time domain reflectometry: An improved calibration considering soil bulk density. Soil Sci. 2010; 175(10): 469–73.
  • 28. Karpen S.C. Misuses of regression and ANCOVA in educational research. Am J Pharm Educ. 2017; 81(8): 84–5.
  • 29. Riggs M.R., Haroldson K.J., Hanson M.A. Analysis of Covariance Models for Data From Observational Field Studies. J Wildl Manage. 2008; 72(1): 34–43.
  • 30. Huitema B.E. The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies: Second Edition. Anal Covariance Altern Stat Methods Exp Quasi-Experiments, Single-Case Stud Second Ed. 2011; 1–672.
  • 31. Miller G.M., Chapman J.P. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001; 110(1): 40–8.
  • 32. Skierucha W, Wilczek A, Alokhina O. Calibration of a TDR probe for low soil water content measurements. Sensors Actuators, A Phys. 2008; 147(2): 544–52.
  • 33. Suchorab Z., Malec A., Sobczuk H., Łagód G., Gorgol I., Łazuka E., et al. Determination of Time Domain Reflectometry Surface Sensors Sensitivity Depending on Geometry and Material Moisture. Sensors. 2022; 22(3).
  • 34. Suchorab Z. Zastosowanie techniki reflektometrii w domenie czasu do oceny stanu zawilgocenia przegród budowlanych. 2016.
  • 35. Rutherford A. ANOVA and ANCOVA: A GLM Approach. Sage. 2001; 1–344.
  • 36. Jamieson J. Analysis of covariance (ANCOVA) with difference scores. Int J Psychophysiol. 2004; 52(3): 277–83.
  • 37. Jennings M.A., Cribbie R.A. Comparing Pre-Post Change Across Groups: Guidelines for Choosing between Difference Scores, ANCOVA, and Residual Change Scores. J Data Sci. 2021; 14(2): 205–30.
  • 38. Lai K., Kelley K. Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: Sample size planning via narrow confidence intervals. Br J Math Stat Psychol. 2012; 65(2): 350–70.
  • 39. The R Project for Statistical Computing [Internet]. 2016. Available from: www.r-project.org
  • 40. Roth K., Schulin R., Flühler H., Attinger W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res. 1990; 26(10): 2267–73.
  • 41. Hung S.L., Kao C.Y., Huang J.W. Constrained K- means and Genetic Algorithm-based Approaches for Optimal Placement of Wireless Structural Health Monitoring Sensors. Civ Eng J. 2022; 8(12): 2675–92
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a4d8a7c8-2100-423e-a2c4-008f8544e0ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.